IPC分类号 : C09D163/00,C09D101/02,C09D5/08,C09D7/61
专利摘要
本发明涉及具有优异性能的超疏水/疏油涂层的制备及应用,包括:将纳米粒子和纤维素分散在含碱性物质的醇溶液中,加入正硅酸四乙酯和含氟有机硅烷进行水解包覆,形成溶液A;将环氧树脂分散在醇溶液中,形成溶液B;将溶液A与溶液B混合均匀后,再加入正硅酸四乙酯和含氟有机硅烷进行反应生成聚硅氧烷,称为溶液C;将含氟的胺类化合物溶解于醇溶液中,称为溶液D;将溶液C与溶液D混合均匀,喷涂到基底上,固化,即得。构造了一种多级微纳米分级结构,化学稳定性良好,对N,N‑二甲基甲酰胺液滴(34.4mN/m)可以达到完全排斥的效果,对正十六烷(27.1mN/m)的接触角为120°,其制备方法简单、可大规模喷涂,为超疏水/疏油涂层的工业化铺平了道路。
权利要求
1.一种具有优异性能的超疏水/疏油涂层的制备方法,其特征在于,包括:
将纳米粒子和纤维素分散在含碱性物质的醇溶液中,加入正硅酸四乙酯和含氟有机硅烷进行水解,生成SiO2对纳米粒子进行包覆,形成溶液A;
将环氧树脂分散在醇溶液中,形成溶液B;
将溶液A与溶液B混合均匀后,再加入正硅酸四乙酯和含氟有机硅烷进行反应生成聚硅氧烷,称为溶液C;
将含氟的胺类化合物溶解于醇溶液中,称为溶液D;
将溶液C与溶液D混合均匀,喷涂到基底上,固化,即得;
所述含氟的胺类化合物的制备方法为:将七氟丁酸与氨乙基氨丙基三甲氧基硅烷混合均匀,使其反应而得;
所述纳米粒子为蒙脱石、锂皂石、凹凸棒石、水滑石、高岭石、二氧化硅、二氧化钛、氧化锌、氧化铝、碳纳米管、氧化石墨烯中的至少一种;
所述 纤维素为微米级。
2.如权利要求1所述的具有优异性能的超疏水/疏油涂层的制备方法,其特征在于,所述纳米粒子和纤维素的质量比为4~6:5~8。
3.如权利要求1所述的具有优异性能的超疏水/疏油涂层的制备方法,其特征在于,所述含氟有机硅烷为全氟辛基三氯硅烷、全氟辛基三甲氧基硅烷、全氟辛基三乙氧基硅烷、全氟癸基三氯硅烷、全氟癸基三甲氧基硅烷、全氟癸基三乙氧基硅烷、全氟辛基二甲基氯硅烷、全氟辛基二甲基甲氧基硅烷、全氟癸基二甲基氯硅烷、全氟癸基二甲基甲氧基硅烷中的至少一种。
4.如权利要求1所述的具有优异性能的超疏水/疏油涂层的制备方法,其特征在于,纳米粒子包覆的具体步骤为:将分散有纳米粒子和纤维素及含碱性物质的醇溶液加热至60℃~65℃,然后,依次滴加正硅酸四乙酯和含氟有机硅烷,于60℃~65℃下反应3~4h,即得。
5.如权利要求1所述的具有优异性能的超疏水/疏油涂层的制备方法,其特征在于,所述溶液A中,正硅酸四乙酯和含氟有机硅烷的加入量体积之比为2~4:1。
6.如权利要求1所述的具有优异性能的超疏水/疏油涂层的制备方法,其特征在于,所述溶液B中,环氧树脂的质量浓度为0.2~0.5g/ml。
7.如权利要求1所述的具有优异性能的超疏水/疏油涂层的制备方法,其特征在于,所述溶液C中,正硅酸四乙酯和含氟有机硅烷的质量比为1~3:1~3。
8.如权利要求1所述的具有优异性能的超疏水/疏油涂层的制备方法,其特征在于,所述生成聚硅氧烷的具体步骤为:将溶液A与溶液B混合,在60℃~65℃搅拌2~3h,然后一次性投加正硅酸四乙酯和含氟有机硅烷,继续搅拌2~3h,即得。
9.如权利要求1所述的具有优异性能的超疏水/疏油涂层的制备方法,其特征在于,所述七氟丁酸与氨乙基氨丙基三甲氧基硅烷的体积比为1~1.5:1~1.4。
10.权利要求1-9任一项所述的方法制备的具有优异性能的超疏水/疏油涂层。
11.权利要求10所述的超疏水/疏油涂层在输油、储油、防油爬行中的应用。
说明书
技术领域
本发明属于超双疏材料制备领域,具体涉及具有优异性能的超疏水/疏油涂层的制备及性能研究。
背景技术
公开该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
一般的,将水滴在固体表面的静态接触角大于150°,滑动角小于10°的表面称为超疏水表面。受自然界中的荷叶自清洁效应的启发,超疏水涂层得到了快速的发展,人们模仿荷叶特殊的表面结构构造出性能优异的超疏水涂层,研究表面,构造超疏水涂层最关键的两个条件便是微纳米结构以及较低表面能物质修饰,其在自清洁,防结冰,油水分离等领域具有广泛的应用。
然而随着工业的快速发展,单一的超疏水性能已经无法满足人们的实际需要,既具有超疏水性能又具有超疏油/疏油性能的涂层引起了研究人员极大的关注,但对超疏油/疏油表面的制备一直是一个难题,因为其表面张力远小于水的表面张力,所以更容易润湿接触表面,从而对表面产生污染,因此这就对材料的选择以及涂层结构的构建提出了更高的要求。并且在实际应用中,大部分超疏液涂层会被外在接触物摩擦,会使涂层的结构以及低表面能物质受到破坏,严重的还会使涂层失去疏液性能,这是对涂层机械性能稳定性的挑战。并且疏液涂层也有可能在强酸强碱以及高低温等恶劣环境中使用,也是对涂层稳定性的一种挑战。
目前对超疏油/疏油涂层的研究大都集中在实验室阶段,且制备成本高,步骤繁琐,可操作性不强,制备效率低,难以进大规模制备,并且涂层的疏液性与涂层的粘附性往往是不能共存的,即疏液涂层不耐磨,耐磨涂层难疏液,涂层的粘附力问题始终是涂层走向工业化最大的壁垒。
发明内容
为了克服上述问题,本发明提供了一种具有优异性能的超疏水/疏油涂层的制备及性能研究。通过构造了一种多级微纳米分级结构制备出了一种价格低廉,机械性能良好,具有良好化学稳定性的超疏水/疏油的涂层,对表面张力为34.4mN/m的N,N-二甲基甲酰胺液滴可以达到完全排斥的效果,正十六烷(27.1mN/m)的接触角约为120°且制备工艺简单,可进行大规模喷涂,为超疏水/疏油涂层的工业化铺平了道路。
为实现上述技术目的,本发明采用的技术方案如下:
一种具有优异性能的超疏水/疏油涂层的制备方法,包括:
将纳米粒子和纤维素分散在含碱性物质的醇溶液中,加入正硅酸四乙酯和含氟有机硅烷进行水解,形成SiO2对纳米粒子进行包覆,形成溶液A;
将环氧树脂分散在醇溶液中,形成溶液B;
将溶液A与溶液B混合均匀后,再加入正硅酸四乙酯和含氟有机硅烷进行反应生成聚硅氧烷,称为溶液C;
将含氟的胺类化合物溶解于醇溶液中,称为溶液D;
将溶液C与溶液D混合均匀,喷涂到基底上,固化,即得。
本申请利用纤维素短棒状结构使不同尺寸的纳米颗粒在其上有效沉积,并形成不同的沉积相,再配合正硅酸四乙酯的水解包覆、聚硅氧烷生成两步处理,形成具有多级粗糙度的微纳米结构,最后,将其与具有良好粘附力的环氧树脂相结合,成功构造出一种成本低具有良好耐磨性能和化学稳定性的超疏水/疏油表面。
在一些实施例中,所述纳米粒子和纤维素的质量比为4~6:5~8,使纳米粒子更均匀地分别在纤维素,提高了涂层的强度和与环氧树脂的结合性。
本申请中对纳米粒子的具体组成并不作特殊的限定,在一些实施例中,所述纳米粒子为蒙脱石、锂皂石、凹凸棒石、水滑石、高岭石、二氧化硅、二氧化钛、氧化锌、氧化铝、碳纳米管、氧化石墨烯中的至少一种,以根据需要制备出具有不同性能的超疏水/疏油表面。
本申请中对含氟有机硅烷的具体组成并不作特殊的限定,在一些实施例中,所述含氟有机硅烷为十七氟癸基三甲氧基硅烷、全氟辛基三氯硅烷、全氟辛基三甲氧基硅烷、全氟辛基三乙氧基硅烷、全氟癸基三氯硅烷、全氟癸基三甲氧基硅烷、全氟癸基三乙氧基硅烷、全氟辛基二甲基氯硅烷、全氟辛基二甲基甲氧基硅烷、全氟癸基二甲基氯硅烷、全氟癸基二甲基甲氧基硅烷中的至少一种,以引入氟元素降低涂层的表面能,同时形成具有多级粗糙度的微纳米结构。
在一些实施例中,纳米粒子包覆的具体步骤为:将分散有纳米粒子和纤维素及含碱性物质的醇溶液加热至60℃~65℃,然后,依次滴加正硅酸四乙酯和含氟有机硅烷,于60℃~65℃下反应3~4h,即得;形成的SiO2粒子包覆在纳米粒子和纤维素外部,形成多级结构。
在一些实施例中,所述溶液A中,正硅酸四乙酯和含氟有机硅烷的加入量之比为2~4:1,在有效包覆纳米粒子的同时,降低涂层的表面能;
在一些实施例中,所述溶液B中,环氧树脂的质量浓度为0.2~0.5g/ml;将多级微纳米结构与环氧树脂牢固的粘接在一起,使其具有良好的耐磨性能和化学稳定性。
在一些实施例中,所述溶液C中,正硅酸四乙酯和含氟有机硅烷的质量比为1~3:1~3,以提高反应效率和收率。
在一些实施例中,所述生成聚硅氧烷的具体步骤为:将溶液A与溶液B混合,在60℃~65℃搅拌2~3h,然后迅速加入正硅酸四乙酯和含氟有机硅烷,继续搅拌2~3h,即得;形成具有多级粗糙度的微纳米结构的同时,进一步降低表面能。
在一些实施例中,所述含氟的胺类化合物的制备方法为:将七氟丁酸与氨乙基氨丙基三甲氧基硅烷混合均匀,使其反应而得,形成环氧树脂固化剂的同时,引入氟元素降低涂层表面能;
在一些实施例中,所述七氟丁酸与氨乙基氨丙基三甲氧基硅烷的体积比为1~1.5:1~1.4,使其兼具较好的固化和降低表面能的效果。
本发明还提供了任一上述的方法制备的具有优异性能的超疏水/疏油涂层。
本发明还提供了上述的超疏水/疏油涂层在输油、储油,防油爬行中的应用。
本发明的有益效果在于:
(1)本申请通过利用不同尺寸的纳米颗粒和纤维素构成出具有多级粗糙度的微纳米结构,与具有良好粘附力的环氧树脂相结合,成功构造出一种成本低具有良好性能的超疏水/疏油表面,为其实现真正的工业化提供了新的思路。
(2)本申请的超疏水/疏油表面不仅疏水、疏油性能突出,而且具有优异的耐磨性和化学稳定性,能够承受500g重物的摩擦和220℃高温或王水溶液的侵蚀。
(3)本申请的操作方法简单、成本低、具有普适性,易于规模化生产。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1是实施例1的摩擦循环测试实物图。(a)为摩擦循环测试机,其上负载5000N重物,(b)将涂层涂覆在玻璃片后,对其进行耐摩擦测试,(c)不同液滴对应不同摩擦循环后的接触角;
图2是实施例1涂层双疏性能测试图。(a)涂层在王水中浸泡一定时间后,DMF的接触角和滑动角变化。(b)涂层在不同温度环境下对应的DMF的接触角和滑动角变化。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本申请使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
正如背景技术所介绍的,针对目前涂层的疏液性与涂层的粘附性往往是不能共存的,即疏液涂层不耐磨,耐磨涂层难疏液的问题。因此,本发明提出一种具有优异性能的超疏水/疏油涂层的制备方法,包括:
将纳米粒子和纤维素分散在含碱性物质的醇溶液中,加入正硅酸四乙酯和含氟有机硅烷进行水解,生成SiO2对纳米粒子进行包覆,形成溶液A;
将环氧树脂分散在醇溶液中,形成溶液B;
将溶液A与溶液B混合均匀后,再加入正硅酸四乙酯和含氟有机硅烷进行反应生成聚硅氧烷,称为溶液C;
将含氟的胺类化合物溶解于醇溶液中,称为溶液D;
将溶液C与溶液D混合均匀,喷涂到基底上,固化,即得。
本申请中醇溶液可以为甲醇或乙醇溶液。
环氧树脂可以为双酚A环氧树脂、双酚F环氧树脂、氢化双酚A环氧树脂、羟甲基双酚A型环氧树脂、溴改性二酚基丙烷环氧树脂中的至少一种。
本申请中涂层可以喷涂在无机各种基底上,陶瓷,木材,钢铁,铝片等。
下面结合具体的实施例,对本发明做进一步的详细说明,应该指出,所述具体实施例是对本发明的解释而不是限定。
实施例1:
一.超疏水/疏油涂层的制备
1.超疏水/疏油悬浮液的制备
取0.4g 50nmSiO2、0.5g 25um纤维素,将其分散于30ml无水乙醇和10ml氨水混合液中,超声搅拌30min后,在60°水浴条件下加热,将2ml正硅酸四乙酯(TEOS)逐滴加入至混合液中,将1ml十七氟癸基三甲氧基硅烷(FAS)逐滴加入至混合液中,在60°下搅拌4小时,称为溶液A。
取1g双酚A型环氧树脂(E51)将其溶于5ml无水乙醇中,超声搅拌30min,使其充分溶解,称为溶液B。将溶液A与溶液B混合,在60°搅拌两小时后迅速加入0.6mlTEOS,0.6mlFAS,继续搅拌两小时,称为溶液C。
固化剂的制备
取2.22ml氨乙基氨丙基三甲氧基硅烷(AS)溶于10ml去离子水中,取2.14ml七氟丁酸溶于10ml去离子水中,待其完全溶解后,将七氟丁酸溶液逐滴加入到AS的水溶液中,待滴加完成后,在100℃下,使其反应,待溶剂蒸完后,得到淡黄色胶体,加入10ml无水乙醇,使其超声溶解,称为溶液D。
将溶液C和溶液D混合后,在60℃下搅拌30分钟,既可得到超疏水/疏油悬浮液。
2.超疏水/疏油涂层的制备
将所得到超疏水/疏油悬浮液2ml利用喷枪在400kPa的压力下均匀喷涂到玻璃片(3*8cm)上,厚度约为0.2mm左右,在真空烘箱中90℃固化12小时,即可得到超疏水/疏油涂层。
二.涂层机械性能研究
静态接触角和滑动角通过KRüSSDSA25S(德国)接触角系统测量。测试了来自涂层不同区域的至少五个样品,以获得静态接触角和滑动角的平均值。
当超疏水/疏油涂层暴漏在空气环境中时,机械作用力的摩擦和接触不仅会破坏涂层表面的分级粗糙结构,还会破坏低表面能物质与基底的粘附性,然而这两者恰恰是涂层实现超疏水/疏油性能的关键。本文将通过循环摩擦机器对涂层机械性能进行探究,负载5000N的重物在循环摩擦机器(高铁检测仪器公司出品GT-7034-B,其上负载500g重物)上对涂层进行耐磨性测试,以摩擦五次为一个循环(以10cm为一个循环)。测试结果如下图1所示。
图1为摩擦实物图,当经过五个摩擦循环时,涂层未发生脱落现象,图1中c为不同摩擦循环后,超疏水/疏油表面与不同表面张力液体的接触角结果,可以看到经过五次摩擦循环后,对水的接触角变为168.8°,经过十次摩擦循环后,对水的接触角变为163.3°,再经过20次摩擦循环后,对DMF仍然可以达到超疏的状态,正十六烷的接触角变为93.2°,仍然可以达到疏液的效果。这种机械损坏行为并没有破坏涂层表面的超疏水/疏油特性,说明本申请的涂层具有良好的机械稳定性。其具有良好的耐磨性能可能归因于将多级微纳米结构牢固的粘接在一起的环氧树脂具有良好的耐磨性能,使其能够承受一定程度的机械磨损。
三.涂层化学性能稳定性测试
超双疏材料优异的化学稳定性可以使材料在更多的领域具有实用价值,因而增强材料的化学稳定性也成为了研究人员的主要研究方向,本申请通过测量在极端温度中以及在王水溶液(浓盐酸与浓硝酸体积比为3:1)中水滴和DMF的接触角和滚动角来衡量涂层的化学稳定性,测试结果如图2中a以及b所示。
将涂层分别放置在220℃高温环境中6小时后,以及零下25°环境中放置24小时后,待其恢复室温,测量DMF接触角和滚动角,可以看到DMF接触角仍然在150°之上,滑动角仍然小于10°。本申请还分别测量了将涂层放置在不同温度下(涂层在待测温度下放置6小时后,取出,于室温下滴加DMF,测量其接触角和滚动角),对应的接触角和滑动角的变化,如图2中b所示,可以看出本申请的涂层具有优异的耐极端温度的能力。除此之外,本申请还配制了王水溶液来检测涂层的耐化学性能,虽然这种极端的环境在实际应用中并不多见,可是这也是衡量涂层性能的一种最直接的手段,本申请以30分钟为一个周期,将样品拿出后用水清洗干净并干燥,利用DMF的接触角和滑动角的变化来衡量涂层的性能,如图2中a所示。可以看到,在经过三个周期后,DMF仍然具有较高的接触角和较低的滚动角,仍旧具有出色的性能。
四.总结
本申请通过利用不同尺寸的二氧化硅和纤维素构成出具有多级粗糙度的微纳米结构,与具有良好粘附力的环氧树脂相结合,成功构造出一种成本低具有良好性能的超疏水/疏油表面,为其实现真正的工业化提供了新的思路。
实施例2
1.超疏水/疏油悬浮液的制备
取0.6g 50nmSiO2、0.8g 25um纤维素,将其分散于30ml无水乙醇和10ml氨水混合液中,超声搅拌30min后,在63°水浴条件下加热,将4ml正硅酸四乙酯(TEOS)逐滴加入至混合液中,将1ml十七氟癸基三甲氧基硅烷(FAS)逐滴加入至混合液中,在63°下搅拌3.5小时,称为溶液A。
取2.5g双酚A型环氧树脂(E51)将其溶于5ml无水乙醇中,超声搅拌30min,使其充分溶解,称为溶液B。将溶液A与溶液B混合,在63°搅拌3小时后迅速加入0.6mlTEOS,0.2mlFAS,继续搅拌两小时,称为溶液C。
固化剂的制备
取2.22ml氨乙基氨丙基三甲氧基硅烷(AS)溶于10ml去离子水中,取2.14ml七氟丁酸溶于10ml去离子水中,待其完全溶解后,将七氟丁酸溶液逐滴加入到AS的水溶液中,待滴加完成后,在100℃下,使其反应,待溶剂蒸完后,得到淡黄色胶体,加入10ml无水乙醇,使其超声溶解,称为溶液D。
将溶液C和溶液D混合后,在60℃下搅拌30分钟,既可得到超疏水/疏油悬浮液。
2.超疏水/疏油涂层的制备
将所得到超疏水/疏油悬浮液2ml利用喷枪在400kPa的压力下均匀喷涂到玻璃片(3*8cm)上,厚度约为0.2mm左右,在真空烘箱中90℃固化12小时,即可得到超疏水/疏油涂层。
实施例3:
1.超疏水/疏油悬浮液的制备
取0.4g 50nmSiO2、0.6g 25um纤维素,将其分散于30ml无水乙醇和10ml氨水混合液中,超声搅拌30min后,在65°水浴条件下加热,将3ml正硅酸四乙酯(TEOS)逐滴加入至混合液中,将1ml十七氟癸基三甲氧基硅烷(FAS)逐滴加入至混合液中,在65°下搅拌3小时,称为溶液A。
取1.8g双酚A型环氧树脂(E51)将其溶于5ml无水乙醇中,超声搅拌30min,使其充分溶解,称为溶液B。将溶液A与溶液B混合,在65°搅拌2.5小时后迅速加入0.6mlTEOS,0.3mlFAS,继续搅拌两小时,称为溶液C。
固化剂的制备
取2.22ml氨乙基氨丙基三甲氧基硅烷(AS)溶于10ml去离子水中,取2.14ml七氟丁酸溶于10ml去离子水中,待其完全溶解后,将七氟丁酸溶液逐滴加入到AS的水溶液中,待滴加完成后,在100℃下,使其反应,待溶剂蒸完后,得到淡黄色胶体,加入10ml无水乙醇,使其超声溶解,称为溶液D。
将溶液C和溶液D混合后,在60℃下搅拌30分钟,既可得到超疏水/疏油悬浮液。
2.超疏水/疏油涂层的制备
将所得到超疏水/疏油悬浮液2ml利用喷枪在400kPa的压力下均匀喷涂到玻璃片(3*8cm)上,厚度约为0.2mm左右,在真空烘箱中90℃固化12小时,即可得到超疏水/疏油涂层。
实施例4
与实施例1的不同之处在于:纳米粒子为蒙脱石。
实施例5
与实施例1的不同之处在于:纳米粒子为水滑石。
实施例6
与实施例1的不同之处在于:纳米粒子为氧化锌。
实施例7
与实施例1的不同之处在于:纳米粒子为氧化石墨烯。
实施例8
与实施例1的不同之处在于:溶剂A中,含氟有机硅烷为全氟辛基三氯硅烷。
实施例9
与实施例1的不同之处在于:溶剂A中,含氟有机硅烷为全氟癸基三氯硅烷。
实施例10
与实施例1的不同之处在于:溶剂A中,含氟有机硅烷为全氟辛基二甲基甲氧基硅烷。
实施例11
与实施例1的不同之处在于:溶剂A中,含氟有机硅烷为全氟辛基三乙氧基硅烷。
最后应该说明的是,以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。
具有优异性能的超疏水/疏油涂层的制备及应用专利购买费用说明
Q:办理专利转让的流程及所需资料
A:专利权人变更需要办理著录项目变更手续,有代理机构的,变更手续应当由代理机构办理。
1:专利变更应当使用专利局统一制作的“著录项目变更申报书”提出。
2:按规定缴纳著录项目变更手续费。
3:同时提交相关证明文件原件。
4:专利权转移的,变更后的专利权人委托新专利代理机构的,应当提交变更后的全体专利申请人签字或者盖章的委托书。
Q:专利著录项目变更费用如何缴交
A:(1)直接到国家知识产权局受理大厅收费窗口缴纳,(2)通过代办处缴纳,(3)通过邮局或者银行汇款,更多缴纳方式
Q:专利转让变更,多久能出结果
A:著录项目变更请求书递交后,一般1-2个月左右就会收到通知,国家知识产权局会下达《转让手续合格通知书》。
动态评分
0.0