专利转让平台_买专利_卖专利_中国高校专利技术交易-买卖发明专利上知查网

全部分类
全部分类
双通道反馈刚柔耦合平台控制方法

双通道反馈刚柔耦合平台控制方法

IPC分类号 : G05B13/04

申请号
CN201811401005.X
可选规格
  • 专利类型: 发明专利
  • 法律状态: 有权
  • 申请日: 2018-11-22
  • 公开号: CN109407511B
  • 公开日: 2019-03-01
  • 主分类号: G05B13/04 分类号: G05B13/04
  • 专利权人: 广东工业大学

专利摘要

本发明公开了一种双通道反馈刚柔耦合平台控制方法,为了解决柔性铰链低频振动对控制信号带来的干扰,将控制信号分离成前馈、柔性铰链扰动力和速度位移偏差纠正三种控制量。当运动规划合理时,刚柔耦合平台的等效动力学模型为无摩擦的理想刚体,控制力主要时前馈和柔性铰链的作用力。速度位移偏差主要由柔性铰链的弹性变形引起,主要频率分量为柔性铰链的固有频率,可以通过陷波滤波滤除。由于ESO本身有滤波功能,因此,将上述三种控制信号叠加后,不再有谐振分量。将平台的动力学响应方程等效转换成理想无扰形式。这样既避免了模型切换控制的繁琐复杂,又实现了高速精密运动。

权利要求

1.一种双通道反馈刚柔耦合平台控制方法,其特征在于,包括以下步骤:

步骤1,以最大加速度作为约束,对工作平台进行运动规划,得到运动规划的位移、速度和加速度;所述最大加速度的确定方法为:

最大规划加速度为:

其中,Fmax为电机产生的最大推力,为最大扰动力;

Fmax=ksi 式7

其中,ks为电机力常数,i为电机持续电流;

其中,F为一恒力,amin为在恒力作用下最小加速度,m为工作平台的惯量;

m可由以下式子求得:

其中,f1为初始响应频率,f2为增加质量Δm后的响应频率,k为等效刚度;

联立式6-式10可求得运动规划的最大加速度amax;

步骤2,以规划的位移和速度作为参考输入,以工作平台的位移和速度作为反馈,以工作平台的驱动单元为执行器,建立工作平台的闭环控制系统;

步骤3,检测框架的位移、速度,并分别与工作平台的位移、速度做差,得到框架与运动平台的位移差和速度差,或直接测量框架与工作平台之间的位移差和速度差,记为第一位移差、第一速度差;

步骤4,将工作平台的位移和速度,与规划的位移和速度分别做差,得到位移差、速度差,记为第二位移差、第二速度差,之后输入到控制器中,对第二位移差进行比例增益放大,再对第二位移差进行微分计算后乘以比例增益,得到工作平台的控制量;

或将第二位移差、第二速度差输入到控制器中之后,对第二速度差进行比例增益放大,得到平台的控制量;

步骤5,将所述的第一位移差、第一速度差分别乘以柔性铰链的刚度、阻尼,将得到的结果相加,得到柔性铰链量测扰动力;

步骤6,将所述的工作平台的控制量进行以柔性铰链固有频率为中心频率的陷波滤波,再将步骤5所述的量测扰动力以及步骤1中运动规划的加速度补偿到控制量中;

步骤7,将所述的第二位移差与步骤6进行陷波滤波后的控制量一起输入到扩张状态观测器中,估计工作平台的扰动差,得到扰动差的估计值;所述的扩张状态观测器的设计为:

上式中,m为工作平台的惯量,ey为第二位移差,为位移差的估计值,为第二速度差的估计值,为工作平台扰动差的估计值,u为控制量,β1=3ω,β2=3ω2,β3=ω3,ω为需要调节的参数;

步骤8,将所述扰动差的估计值补偿到步骤6处理后得到的控制量中,得到设计的控制量。

2.如权利要求1所述的双通道反馈刚柔耦合平台控制方法,其特征在于,所述的工作平台为刚柔耦合平台,包括安装于导轨上的所述框架以及通过所述柔性铰链连接于所述框架上的工作平台。

3.如权利要求1所述的双通道反馈刚柔耦合平台控制方法,其特征在于,所述的闭环控制系统,包括工作平台、框架、工作平台的位移检测单元和速度检测单元,框架的位移检测单元和速度检测单元,工作平台的驱动单元以及控制器。

4.如权利要求1所述的双通道反馈刚柔耦合平台控制方法,其特征在于,所述的最大加速度是由工作平台的驱动单元对工作平台的最大驱动力减去最大扰动量的差值除以工作平台的惯量得到的。

说明书

技术领域

本发明涉及高速精密运动控制领域,具体涉及一种双通道反馈刚柔耦合平台控制方法。

背景技术

高速精密运动控制领域中,基于机械导轨的运动平台存在摩擦死区,因此控制精度只能达到微米级别。而更高精度控制的场合中,需要使用气浮、磁悬浮或静压导轨等方式以降低甚至消除摩擦影响,然而采用上述技术的方案成本较高,并且使用的环境要求较高而不适用于量大面广的电子制造技术领域。

刚柔耦合平台巧妙地结合了直线平台大范围刚度运动和柔性铰链无摩擦精密运动的特点,在速度过零点,用柔性铰链的弹性变形来避免摩擦死区,实现了摩擦死区的补偿,因此可以实现连续高精度的运动。由于柔性铰链的工作原理限制了其主要适用于微小行程的运动,故在大行程运动过程中,柔性铰链往往会与有摩擦运动副配合使用,组成刚柔耦合平台来实现大行程高精度的运动。由于引入了柔性铰链,会降低系统的带宽,引起低频振动,使用传统的PID控制,经过控制器放大后,控制信号产生更大的波动,进一步加剧振动,影响控制精度,若对控制信号直接进行滤波处理,会在滤除柔性铰链扰动的同时也把运动规划命令的信息滤去,则控制信号完全不能起作用。并且,由于在大范围运动和微动补偿过程中控制规律不一致,需要切换模型进行控制,这使得控制过程变得十分复杂。

发明内容

本发明的目的是提供一种双通道反馈刚柔耦合平台控制方法,将平台的动力学响应方程等效转换成理想无扰形式,这样既避免了模型切换控制的繁琐复杂,又实现了高速精密运动。

为了实现上述任务,本发明采用以下技术方案:

一种双通道反馈刚柔耦合平台控制方法,包括以下步骤:

步骤1,以最大加速度作为约束,对工作平台进行运动规划,得到运动规划的位移、速度和加速度;

步骤2,以规划的位移和速度作为参考输入,以工作平台的位移和速度作为反馈,以工作平台的驱动单元为执行器,建立工作平台的闭环控制系统;

步骤3,检测框架的位移、速度,并分别与工作平台的位移、速度做差,得到框架与运动平台的位移差和速度差,或直接测量框架与工作平台之间的位移差和速度差,记为第一位移差、第一速度差;

步骤4,将步骤2中工作平台的位移和速度,与规划的位移和速度分别做差,得到位移差、速度差,记为第二位移差、第二速度差,之后输入到所述的控制器中,对第二位移差进行比例增益放大,再对第二位移差进行微分计算后乘以比例增益,得到工作平台的控制量;

或将第二位移差、第二速度差输入到控制器中之后,对第二速度差进行比例增益放大,得到平台的控制量;

步骤5,将所述的第一位移差、第一速度差分别乘以柔性铰链的刚度、阻尼,将得到的结果相加,得到柔性铰链量测扰动力;

步骤6,将所述的工作平台的控制量进行以柔性铰链固有频率为中心频率的滤波陷波,再将步所述的量测扰动力以及步骤1中运动规划的加速度补偿到控制量中;

步骤7,将所述的第二位移差与步骤6进行陷波滤波后的控制量一起输入到扩张状态观测器中,估计工作平台的扰动差,得到扰动差的估计值;

步骤8,将所述扰动差的估计值补偿到步骤6处理后得到的控制量中,得到设计的控制量。

进一步地,所述的工作平台为刚柔耦合平台,包括安装于导轨上的所述框架以及通过所述柔性铰链连接于所述框架上的工作平台。

进一步地,所述的闭环控制系统,包括工作平台、框架、工作平台的位移检测单元和速度检测单元,框架的位移检测单元和速度检测单元,工作平台的驱动单元以及控制器。

进一步地,所述的最大加速度是由工作平台的驱动单元对工作平台的最大驱动力减去最大扰动量的差值除以工作平台的惯量得到的。

进一步地,所述的扩张状态观测器的设计为:

上式中, m为工作平台的惯量,ey为第二位移差, 为位移差的估计值, 为第二速度差的估计值, 为工作平台扰动差的估计值,u为控制量,β1=3ω,β2=3ω2,β3=ω3,ω为需要调节的参数。

本发明与现有技术相比具有以下技术特点:

1.本发明技术方案基于刚柔耦合平台的设计,将机械导轨摩擦力的扰动转变为柔性铰链的动态变形,通过ESO估计出扰动信息,进行补偿控制,使工作平台等效为一个无摩擦的理想平台,这样可以实现高速精密运动,无需切换控制且降低了控制复杂性。

2.本发明对框架和工作平台的位移和速度进行双测量,因此可以将框架与工作平台的位移差和速度差分别乘以柔性铰链的初始刚度和阻尼,得到该柔性铰链对所述工作平台的量测扰动力,并将该量测扰动力输入到ESO中,使得ESO不需要再估计这部分扰动,大幅降低了ESO的估计负担。

3.本发明中柔性铰链会降低系统的带宽,给系统带来振动,同时会引起控制量的振动,但该振动为低频振动,倘若直接将pd控制器输出的控制信号进行滤波处理,控制量将无法起作用。因此,需要将柔性铰链的量测扰动信息与运动规划加速度信息补偿到控制信号中。

附图说明

图1为本发明实施例1双光栅尺测量单驱动运动控制的工作原理图;

图2为本发明实施例2光栅尺加电容传感器测量单驱动运动控制的工作原理图;

具体实施方式

本发明提出一种双通道反馈的刚柔耦合平台控制方法。为了解决柔性铰链低频振动对控制信号带来的干扰,将控制信号分离成前馈、柔性铰链扰动力和速度位移偏差纠正三种控制量。其中,前馈与规划的加速度成正比;柔性铰链的扰动力由双通道反馈测量和ESO估计得到;速度和位移偏差由pd控制器获得。当运动规划合理时,刚柔耦合平台的等效动力学模型为无摩擦的理想刚体,控制力主要时前馈和柔性铰链的作用力。速度位移偏差主要由柔性铰链的弹性变形引起,主要频率分量为柔性铰链的固有频率,可以通过陷波滤波(notch filter)滤除。由于ESO本身有滤波功能,因此,将上述三种控制信号叠加后,不再有谐振分量。

通过上述方法,将平台的动力学响应方程等效转换成理想无扰形式。这样既避免了模型切换控制的繁琐复杂,又实现了高速精密运动。本发明的技术方案如下:

步骤1,以最大加速度作为约束,对工作平台进行运动规划,得到运动规划的位移、速度和加速度。

特别地,以柔性铰链振动频率和阻尼比为参数,对运动规划曲线参数进行动力学响应优化,避免谐振分量。其中,动力学响应优化步骤如下:

(1)参数化运动规划曲线,并获得运动规划曲线中急动度不为0的区间段对应的加速度曲线区间段;

(2)提取(1)中加速度曲线各区间段对应的加速度输入信号;

(3)通过运动系统的传递函数获得(2)中所述各加速度输入信号对应的位移输出响应在时域上的幅值;

(4)建立优化模型,从而得到运动规划曲线参数的最优值;

(5)根据(4)所获的运动规划曲线参数的最优值,获得最优运动规划曲线。

步骤1中所述的工作平台为刚柔耦合平台,所述刚柔耦合平台包括安装于机械导轨上的所述框架以及通过柔性铰链连接于所述框架上的工作平台。所述框架和所述工作平台各自分别安装有位移检测单元、速度检测单元,用于检测框架、工作平台的位移、速度;所述工作平台安装驱动单元,用于驱动工作平台运动。

所述的最大加速度是由工作平台的驱动单元对工作平台的最大驱动力减去最大扰动量的差值除以工作平台的惯量得到的。其中,最大驱动力由驱动单元的力常数乘以持续电流求得;最大扰动力获取方法为:施加一恒定驱动力F,测量加速度曲线,取最小的加速度值a,通过F-df=ma可计算出最大扰动力df;工作平台惯量m可通过振动响应测试得到,振动响应测试的步骤如下:

S1,设置双加速度传感器,分别置于工作平台和导轨上,可以测量出框架运动加速度和弹性振动加速度,并积分出速度和位移信息,通过傅里叶变换得到弹性振动的频率f1

S2,对系统增加质量△m,重复所述S1过程,获得f2

S3,通过公式 与 即可求得工作平台惯量m,其中k为等效刚度。

步骤2,以规划的位移和速度作为参考输入,以工作平台的位移和速度(测量值)作为反馈,以工作平台的驱动单元为执行器,建立工作平台的闭环控制系统;

所述的闭环控制系统,包括工作平台、框架、工作平台的位移检测单元和速度检测单元,框架的位移检测单元和速度检测单元,工作平台的驱动单元以及控制器;该控制器采用pd控制器。

步骤3,检测框架的位移、速度,并分别与工作平台的位移、速度做差,得到框架与运动平台的位移差和速度差,或直接测量框架与工作平台之间的位移差和速度差,记为第一位移差、第一速度差;

步骤4,将步骤2中工作平台的位移和速度,与规划的位移和速度分别做差,得到位移差、速度差,记为第二位移差、第二速度差,之后输入到所述的控制器中,对第二位移差进行比例增益放大,再对第二位移差进行微分计算后乘以比例增益,得到工作平台的控制量;

或将第二位移差、第二速度差输入到控制器中之后,对第二速度差进行比例增益放大,得到平台的控制量;

步骤5,将所述的第一位移差、第一速度差分别乘以柔性铰链的刚度、阻尼,将得到的结果相加,得到柔性铰链量测扰动力;

步骤6,将所述的工作平台的控制量进行以柔性铰链固有频率为中心频率的滤波陷波(notch filter),再将步所述的量测扰动力以及步骤1中运动规划的加速度补偿到控制量中;

步骤7,将所述的第二位移差与步骤6进行陷波滤波后的控制量一起输入到扩张状态观测器ESO(extended state observer)中,估计工作平台的扰动差,得到扰动差的估计值;

步骤8,将所述扰动差的估计值补偿到步骤6处理后得到的控制量中,得到设计的控制量,此时控制系统转变为无扰动的刚体平台控制系统。

实施例1:

本实施例中,双通道反馈刚柔耦合平台控制方法为双光栅尺测量单驱动运动控制;其中光栅尺分别用于测量框架、工作平台的位移;速度信息是由光栅尺对位移处理得到。本方案中,参数上标圆点表示导数,圆点个数为导数阶数;参数上标^表示估计值。

如图1所示,本发明实施例中,刚柔耦合平台主要包括机械导轨、框架刚体、柔性铰链、工作平台,设定xM,xm分别为框架刚体和工作平台的位移, 分别为框架刚体和工作平台的速度,M,m分别为框架刚体和工作平台的惯量,k,c分别为柔性铰链的刚度和阻尼,F为驱动单元作用在工作平台上的驱动力,f为框架刚体与机械导轨之间的摩擦力,s,v,a分别为运动规划的位移、速度和加速度。

工作平台运动力学响应方程为:

框架刚体运动力学响应方程为:

柔性铰链的受力为:

进行扰动补偿后,工作平台的动力学响应方程为:

将柔性铰链受力式3代入至平台刚性的动力学响应方程,即式4,得到工作平台的等效动力学响应方程为:

本实施例中,式5得到的工作平台的等效动力学响应方程为无摩擦的理想平台。框架刚体是在柔性铰链的作用力(量测扰动力)Δf作用下克服摩擦运动,摩擦的扰动引起框架平台加速度的变化和柔性铰链的变形,因此本实施例将无法测量的摩擦力扰动转换为可以测量的柔性铰链作用。

本实施例中,对工作平台进行运动规划,规划出其位移s,速度v和加速度a。其中最大规划加速度为

其中,Fmax为电机(驱动单元)产生的最大推力, 为最大扰动力。

Fmax=ksi 式7

其中,ks为电机力常数,i为电机持续电流。

其中,F为一恒力,amin为在恒力作用下最小加速度,m为工作平台的惯量。

m可由以下式子求得:

其中,f1为初始响应频率,f2为增加质量Δm后的响应频率,k为等效刚度。

联立式6-式10可求得运动规划的最大加速度amax

以规划的位移和速度为参考输入,以工作平台的位移和速度作为反馈,所述工作平台的驱动单元为执行器,建立所述工作平台的闭环控制系统。将实际反馈与运动规划的位移差值(第二位移差)ey=xm-s与实际反馈速度与运动规划的速度差值(第二速度差) 输入到控制器中,对位移差值进行比例增益放大后进行微分计算,乘以比例增益,得到工作平台控制量。然后,对所述工作平台控制量进行陷波滤波处理,再把所量测的柔性铰链扰动力Δf与运动规划加速度a补偿在工作平台控制量中。最后,将ey与控制量一起输入到ESO中,得到工作平台扰动差的估计值 将该扰动差的估计值补偿到工作平台的控制量中,把刚体平台转变为一个无扰动的理想系统。

取 进入ESO的量为ey和控制量u,则ESO的设计为:

其中,β1=3ω,β2=3ω2,β3=ω3,ω为需要调节的参数。

则设计的控制量为:

其中,kp与kd分别为控制器中比例和微分的放大系数,为大于0的正数。

实施例2

本实施例中,双通道反馈刚柔耦合平台控制方法为光栅尺加电容传感器测量单驱动运动控制;其中电容传感器用于测量框架与平台的相对位移;相比于实施例1,实施例1通过两个光栅尺测量距离求差后得到框架与工作平台相对位移,而实施例2中直接测量出相对位移。

如图2所示,在本发明实施例中,刚柔耦合平台主要包括机械导轨、框架刚体、柔性铰链、工作平台组成,设定xm为工作平台的位移, 为工作平台的速度,x为工作平台与框架刚体之间的相对位移, 为工作平台与框架刚体之间的相对速度,M,m分别为框架刚体和工作平台的惯量,k,c分别为柔性铰链的刚度和阻尼,F为驱动单元作用在工作平台上的驱动力,f为框架刚体与机械导轨之间的摩擦力,s,v,a分别为运动规划的位移、速度和加速度。

工作平台运动力学响应方程为:

框架刚体运动力学响应方程为:

柔性铰链的受力为:

进行扰动补偿后,工作平台的动力学响应方程为:

将柔性铰链受力式15代入至平台刚性的动力学响应方程,即式16,得到工作平台的等效动力学响应方程为:

本实施例中,式17得到的工作平台的等效动力学响应方程为无摩擦的理想平台。框架刚体是在柔性铰链的作用力Δf作用下克服摩擦运动,摩擦的扰动引起框架平台加速度的变化和柔性铰链的变形,因此本实施例将无法测量的摩擦力扰动转换为可以测量的柔性铰链作用。

本实施例中,对工作平台进行运动规划,规划出其位移s,速度v和加速度a。其中最大规划加速度amax的计算方法同实施例1。以规划的位移和速度为参考输入,以工作平台的位移和速度作为反馈,所述工作平台的驱动单元为执行器,建立所述工作平台的闭环控制系统。

将实际反馈与运动规划的位移差值ey=xm-s与速度差值 输入到控制器中,对速度差值进行比例增益放大,得到工作平台控制量。然后,对所述工作平台控制量进行陷波滤波处理,再把所量测的柔性铰链扰动力Δf与运动规划加速度a补偿在工作平台控制量中。最后,将ey与控制量一起输入到ESO中,得到工作平台扰动差的估计值 将该扰动差的估计值补偿到工作平台的控制量中,把刚体平台转变为一个无扰动的理想系统。

取 进入ESO的量为ey和控制量u,则ESO的设计为:

其中,β1=3ω,β2=3ω2,β3=ω3,ω为需要调节的参数。

则设计的控制量为:

其中,kp与kd分别为控制器中比例和微分的放大系数,为大于0的正数。

双通道反馈刚柔耦合平台控制方法专利购买费用说明

专利买卖交易资料

Q:办理专利转让的流程及所需资料

A:专利权人变更需要办理著录项目变更手续,有代理机构的,变更手续应当由代理机构办理。

1:专利变更应当使用专利局统一制作的“著录项目变更申报书”提出。

2:按规定缴纳著录项目变更手续费。

3:同时提交相关证明文件原件。

4:专利权转移的,变更后的专利权人委托新专利代理机构的,应当提交变更后的全体专利申请人签字或者盖章的委托书。

Q:专利著录项目变更费用如何缴交

A:(1)直接到国家知识产权局受理大厅收费窗口缴纳,(2)通过代办处缴纳,(3)通过邮局或者银行汇款,更多缴纳方式

Q:专利转让变更,多久能出结果

A:著录项目变更请求书递交后,一般1-2个月左右就会收到通知,国家知识产权局会下达《转让手续合格通知书》。

动态评分

0.0

没有评分数据
没有评价数据
×

打开微信,点击底部的“发现”

使用“扫一扫”即可将网页分享至朋友圈

×
复制
用户中心
我的足迹
我的收藏

您的购物车还是空的,您可以

  • 微信公众号

    微信公众号
在线留言
返回顶部