专利转让平台_买专利_卖专利_中国高校专利技术交易-买卖发明专利上知查网

全部分类
全部分类
一种核壳结构的碳@金属氧化物@金属/三维多孔石墨烯复合材料及其制备方法和应用

一种核壳结构的碳@金属氧化物@金属/三维多孔石墨烯复合材料及其制备方法和应用

IPC分类号 : H01M4/36,H01M4/38,H01M4/62,H01M10/0525,H01M10/054,B82Y30/00

申请号
CN201611236483.0
可选规格
  • 专利类型: 发明专利
  • 法律状态: 有权
  • 申请日: 2016-12-28
  • 公开号: CN106784710B
  • 公开日: 2017-05-31
  • 主分类号: H01M4/36
  • 专利权人: 广东工业大学

专利摘要

本发明公开了一种核壳结构的碳@金属氧化物@金属/三维多孔石墨烯的复合材料的制备方法。该方法通过水热、原位聚合及碳化还原过程,制备了三层核壳结构纳米颗粒/三维多孔石墨烯的复合材料,所述三层核壳结构的碳@金属氧化物@金属的纳米颗粒均匀地嫁接在三维多孔石墨烯表面。本发明方法简单,成本较低、可操作性和重复性好、可规模化生产。所制备复合材料中的纳米颗粒呈现三层核壳型结构并均匀嫁接在三维多孔石墨烯表面,将其应用于锂离子电池和钠离子电池中,均可实现高比容量、高倍率性能以及高循环稳定性的电化学性能。

权利要求

1.一种核壳结构的碳@金属氧化物@金属/三维多孔石墨烯的复合材料的制备方法,其特征在于,包括以下具体步骤:

S1.将三维多孔石墨烯均匀分散到含有金属盐的有机溶剂中,然后滴加一定用量比的去离子水搅拌,得到三维多孔石墨烯和金属盐的均匀分散液;

S2.将步骤S1所得分散液移至水热反应釜中,在100~140℃水热反应2~12h,待其自然冷却后,经抽滤、洗涤、烘干处理,得到金属氧化物/三维多孔石墨烯;

S3.将金属氧化物/三维多孔石墨烯超声分散到含有聚合物单体的水溶液中,在碱性条件下自聚合或酸性条件下加入氧化剂引发聚合,将其单体聚合到金属氧化物/三维多孔石墨烯的表面,再经抽滤、洗涤、烘干后,得到聚合物@金属氧化物/三维多孔石墨烯的复合材料;

S4.将步骤S3所得产物在惰性气氛下500~1000℃进行热处理,升温速率为5~10℃/min,保温时间为0.5~6h,即得到核壳结构的碳@金属氧化物@金属/三维多孔石墨烯的复合材料。

2.根据权利要求1所述的核壳结构的碳@金属氧化物@金属/三维多孔石墨烯复合材料的制备方法,其特征在于,步骤S1中所述的金属盐为锡盐、锗盐或锑盐。

3.根据权利要求2所述的核壳结构的碳@金属氧化物@金属/三维多孔石墨烯复合材料的制备方法,其特征在于,所述锡盐为四氯化锡、氯化亚锡、硝酸锡、硝酸亚锡、醋酸锡或醋酸亚锡;所述锗盐为四氯化锗或四乙基锗;所述锑盐为三氯化锑、硝酸锑或醋酸锑。

4.根据权利要求1所述的核壳结构的碳@金属氧化物@金属/三维多孔石墨烯复合材料的制备方法,其特征在于,步骤S1中所述的有机溶剂为无水乙醇、甲醇、丙酮、乙二醇、异丙醇或N,N-二甲基酰胺;所述的金属盐的浓度为0.005~1.5mol/L;所述的金属盐与三维多孔石墨烯的用量比为0.005~0.5:1mol/g;所述的金属盐与去离子水的用量比为1.5×10-6~3.0×10-3:1mol/mL。

5.根据权利要求1所述的核壳结构的碳@金属氧化物@金属/三维多孔石墨烯复合材料的制备方法,其特征在于,步骤S1中所述搅拌的时间为5~120min。

6.根据权利要求1所述的核壳结构的碳@金属氧化物@金属/三维多孔石墨烯复合材料的制备方法,其特征在于,步骤S2和S3中所述抽滤和洗涤的溶剂为无水乙醇或去离子水中的一种以上;所述烘干的温度为60~100℃,烘干的时间为2~12h。

7.根据权利要求1所述的核壳结构的碳@金属氧化物@金属/三维多孔石墨烯复合材料的制备方法,其特征在于,步骤S3中所述的聚合物单体为多巴胺、苯胺、吡咯或噻吩;所述碱性条件为pH=8~10,碱性条件用氨水或Tris缓冲溶液调节;所述酸性条件为pH=4~6,酸性条件用HCl、H2SO4或柠檬酸调节;所述氧化剂为FeCl3、NH4S2O8或K2Cr2O7

8.根据权利要求1所述的核壳结构的碳@金属氧化物@金属/三维多孔石墨烯复合材料的制备方法,其特征在于,步骤S4中所述的惰性气氛为氮气、氦气或氩气。

9.一种由权利要求1-8任一项所述方法制备的核壳结构的碳@金属氧化物@金属/三维多孔石墨烯复合材料。

10.权利要求9所述的核壳结构的碳@金属氧化物@金属/三维多孔石墨烯复合材料在锂离子电池和钠离子电池中的应用。

说明书

技术领域

本发明属于石墨烯复合纳米材料技术领域,具体涉及一种核壳结构的碳@金属氧化物@金属/三维多孔石墨烯复合材料及其制备方法和应用。

背景技术

发展一种具有高功率密度和良好循环稳定性的下一代锂离子电池(LIBs)和钠离子电池(SIBs),以满足未来高端通讯设备和电动汽车应用需求是当前迫切所需。但是,目前商用锂/钠离子电池负极材料——石墨,由于其具有较低的理论比容量(锂离子电池为372mAh/g,钠离子电池<50mAh/g),导致其能量密度有限,因而,发展一种更高能量密度和长稳定的锂/钠离子电池负极材料是目前迫切所需。

目前,一些储锂/钠的金属单质,如锡(Sn)、锗(Ge)、锑(Sb)等,由于具有相当高的理论比容量和高电导性以及适中的工作电压,因而能提高锂/钠离子电池的能量密度以及改进锂/钠离子电池的安全性能,现已被广泛应用于高性能锂/和钠离子电池负极材料中。但是,由于充放电过程金属单质会发生相当大的体积变化,其不仅会引起金属纳米颗粒严重粉化,从而导致金属纳米颗粒脱离电极,还会引起金属纳米颗粒之间严重团聚,而且还会在金属表面形成大量的SEI膜进而消耗大量的锂源或钠源,由此导致充放电过程中容量衰减快以及稳定性差。

为了克服以上问题,众多科研工作者采用各种策略来提高金属单质结构的稳定性和完整性,例如合成金属纳米结构,或将金属纳米颗粒与碳进行复合形成金属-碳复合物。其中,金属-碳复合物是一种最有效的解决方式,这是由于碳材料能有效地缓冲金属纳米结构的体积膨胀从而改进它的稳定性能。石墨烯由于具有大的理论比表面积(可高达2630m2/g)、高导电性、强的电化学稳定性、表面可功能化以及柔韧性好等特性,被认为是最有可能代替其它碳材料(如石墨、多孔碳、碳纳米管等)来负载金属或金属氧化物来实现进一步增强它们锂/钠离子电池的电化学性能。因此,各种结构的金属-石墨烯复合物已被合成,例如金属单质直接修饰形成金属-石墨烯结构或者形成金属@碳-石墨烯结构或形成夹心式石墨烯支撑的复合物。虽然这些复合物都能改进它们的电化学性能,但是它们的稳定性却并不优于其它金属-碳复合物,甚至低于这些金属-碳复合物。这主要是由于以下几个因素所影响:(1)石墨烯由于具有强的范德华力或悬键作用力,使得分散的石墨烯易团聚或堆叠,导致活性物质的比表面积及多孔结构严重下降;(2)复合物中所使用石墨烯的前驱体主要来源于具有扭曲的石墨化结构和高的C/O比的氧化石墨烯或还原性石墨烯,由此导致其导电性差和结构不稳定;(3)无法有效控制负载在石墨烯上的金属纳米颗粒的尺寸和均匀分布,这是因为这类金属具有较低的熔点,大多数制备需进行高温处理,由此导致金属纳米颗粒会熔合形成大尺寸颗粒;(4)对于一些金属单质直接修饰形成的金属-石墨烯结构,由于金属纳米颗粒直接暴露到电解液中,使得金属和电解液之间会产生副反应,同时,长时间充放电过程中会造成表面的金属脱落。

因此,发展一种特殊结构的金属-石墨烯复合物来抑制金属纳米颗粒团聚以及保持整个电极具有良好的导电性,是当前迫切所需。

发明内容

本发明的目的在于克服现有技术的缺陷,提出一种核壳结构的碳@金属氧化物@金属/三维多孔石墨烯复合材料的制备方法。通过水热、原位聚合及碳化还原过程,制备出核壳结构的碳@金属氧化物@金属的纳米颗粒均匀嫁接于三维多孔石墨烯表面的复合材料。该制备方法简单,成本低、可规模化应用。

本发明的另一目的在于提供上述方法制备的核壳结构的碳@金属氧化物@金属/三维多孔石墨烯复合材料。

本发明的再一目的在于提供上述核壳结构的碳@金属氧化物@金属/三维多孔石墨烯复合材料的应用。

本发明上述目的通过以下技术方案予以实现:

一种核壳结构的碳@金属氧化物@金属/三维多孔石墨烯的复合材料的制备方法,包括以下具体步骤:

S1.将三维多孔石墨烯均匀分散到含有金属盐的有机溶剂中,然后滴加一定用量比的去离子水搅拌,得到三维多孔石墨烯和金属盐的均匀分散液;

S2.将步骤S1所得分散液在100~140℃水热反应2~12h,待其自然冷却后,经抽滤、洗涤、烘干处理,得到金属氧化物/三维多孔石墨烯;

S3.将金属氧化物/三维多孔石墨烯超声分散到含有聚合物单体的水溶液中,在碱性条件下自聚合或酸性条件下加入氧化剂引发聚合,将其单体聚合到金属氧化物/三维多孔石墨烯的表面,再经抽滤、洗涤、烘干后,得到聚合物@金属氧化物/三维多孔石墨烯的复合材料;

S4.将步骤S3所得产物在惰性气氛下500~1000℃进行热处理,升温速率为5~10℃/min,保温时间为0.5~6h,即得到核壳结构的碳@金属氧化物@金属/三维多孔石墨烯的复合材料。

优选地,步骤S1中所述的金属盐为锡盐、锗盐或锑盐;

更为优选地,所述锡盐为四氯化锡、氯化亚锡、硝酸锡、硝酸亚锡、醋酸锡或醋酸亚锡;

所述锗盐为四氯化锗或四乙基锗;

所述锑盐为三氯化锑、硝酸锑或醋酸锑。

优选地,步骤S1中所述的有机溶剂为无水乙醇、甲醇、丙酮、乙二醇、异丙醇或N,N-二甲基酰胺;

优选地,步骤S1中所述的金属盐的浓度为0.005~1.5mol/L;所述的金属盐与三维多孔石墨烯的用量比为0.005~0.5:1mol/g;所述的金属盐与去离子水的用量比为1.5×10-6~3.0×10-3:1mol/mL;

优选地,步骤S1中所述搅拌的时间为5~120min。

优选地,步骤S2和S3中所述抽滤洗涤所用溶剂为无水乙醇或去离子水的一种以上;

优选地,步骤S2和S3所述烘干的温度为60~100℃,烘干的时间为2~12h;

优选地,步骤S3中所述的聚合物单体为多巴胺、苯胺、吡咯或噻吩;

优选地,所述碱性条件为pH=8~10,碱性条件用氨水或Tris缓冲溶液调节;所述酸性条件为pH=4~6,酸性条件用HCl、H2SO4或柠檬酸调节;

优选地,所述氧化剂为FeCl3、NH4S2O8或K2Cr2O7

优选地,步骤S4中所述的惰性气氛为氮气、氦气或氩气。

上述方法制备的核壳结构的碳@金属氧化物@金属/三维多孔石墨烯复合材料及其在锂离子电池或钠离子电池中应用。

本发明提出一种简单水热、原位聚合和碳化过程,制备一种新型的三层核壳结构的碳@金属氧化物@金属/三维多孔石墨烯的复合材料。传统工艺直接采用金属纳米颗粒,无核壳型的包覆结构,金属单质在充放电过程中会发生很大的体积膨胀,造成金属纳米颗粒严重粉化进而导致金属纳米颗粒与电极脱离,也会引起金属纳米颗粒之间严重团聚,而且还会在金属表面形成大量的SEI膜进而消耗大量的锂源或钠源,由此导致充放电过程中容量衰减快以及稳定性差。本发明复合材料中的碳@金属氧化物@金属纳米颗粒呈现出三层核壳型且大小均一、均匀分布。在应用于锂离子电池或钠离子电池时,该结构中的碳层由于其具有高导电性有利于电子的快速传输以及提高金属单质的有效利用率,具有的弹性构架有利于缓冲锂/钠离子脱嵌过程中金属单质纳米粒子的体积膨胀;该结构中的金属氧化物薄层由于其充放电过程会和锂离子或钠离子反应形成小颗粒的金属单质和氧化锂或氧化钠(金属氧化物+Li+或Na++e-→金属单质+氧化锂/氧化钠),能进一步缓冲金属单质纳米粒子的体积膨胀;该结构中富含大量的金属单质起着主要容量作用。另外,三维多孔石墨烯的高导电性和大孔优势有利于保持整个电极具有良好的导电性以及提供快速的锂/钠离子传输通道。

与现有技术相比,本发明具有以下有益效果:

1.本发明采用通过水热方法获得金属氧化物/三维多孔石墨烯,再进一步用原位聚合的方式获得聚合物@金属氧化物/三维多孔石墨烯,最后通过碳化还原方法获得碳@金属氧化物@金属/三维多孔石墨烯的复合材料。本发明的方法简单易行、成本低廉、便于规模化生产。

2.本发明复合材料中的碳@金属氧化物@金属纳米颗粒呈现出三层核壳结构且大小均一、均匀分布。相比于传统工艺,本发明制备的三层核壳型结构中的碳层由于其具有高导电性有利于电子的快速传输以及提高金属单质的有效利用率,具有的弹性构架,在应用于锂离子电池或钠离子电池时,该碳层有利于缓冲锂/钠离子脱嵌过程中金属单质纳米粒子的体积膨胀;该结构中的金属氧化物薄层由于其充放电过程会和锂离子或钠离子反应形成小颗粒的金属单质和氧化锂或氧化钠(金属氧化物+Li+或Na++e-→金属单质+氧化锂/氧化钠),能进一步缓冲金属单质纳米粒子的体积膨胀;该结构中富含大量的金属单质起着主要容量作用。

3.本发明采用的三维多孔石墨烯具有高导电性和大孔优势,在应用于锂离子电池或钠离子电池时,有利于保持整个电极具有良好的导电性以及提供快速的锂/钠离子传输通道。

附图说明

图1为实施例1-6所制备的三维多孔石墨烯的TEM图像。

图2为实施例1所制备的碳@SnO2@Sn/三维多孔石墨烯复合材料的X-射线衍射图。

图3为实施例1所制备的碳@SnO2@Sn/三维多孔石墨烯复合材料的XPS图谱。

图4为实施例1所制备的碳@SnO2@Sn/三维多孔石墨烯复合材料的TEM图像。

图5为实施例1所制备的碳@SnO2@Sn/三维多孔石墨烯复合材料中大孔壁的TEM图像。

图6为实施例1所制备的碳@SnO2@Sn/三维多孔石墨烯复合材料的高分辨TEM图像。

图7为实施例1所制备的碳@SnO2@Sn/三维多孔石墨烯复合材料在充放电电流密度为0.1A/g和1.0A/g条件下的循环性能图。

具体实施方式

以下结合附图和实施例对本发明的技术方案作进一步说明,但本发明的技术方案的实施和保护不局限于所举实施例。

在实施例1-6中:

所述三维多孔石墨烯主要是参考专利201210455913.3的制备方法,具体步骤如下:

1.将大孔弱酸性丙烯酸阳离子交换树脂用浓度为1mol/L的KOH溶液预处理12h;

2.将0.005mol乙酸镍溶于100mL去离子水中,再加入10g步骤1中预处理的大孔弱酸性丙烯酸阳离子交换树脂,磁力搅拌6h,过滤后烘干;

3.将步骤2中的预处理的大孔弱酸性丙烯酸阳离子交换树脂加入到含40g KOH的乙醇溶液中,搅拌烘干;

4.将步骤3中得到产物置于管式炉中升温至850℃,保温2h;

5.将步骤4的产物用HCl处理,后用去离子水洗至中性,干燥,即得到三维多孔石墨烯粉末。

材料表征:图1为上述所制备的三维多孔石墨烯的TEM图像。从图1可知,该材料呈现出三维多孔的类石墨烯结构。

实施例1

1.制备:

(1)将实施例1中制备的100mg三维多孔石墨烯粉末样品加入至560mL含有2.70mmol SnCl4的无水乙醇中,在超声分散仪中超声15min。然后,量取40mL去离子水,在磁力搅拌下缓慢滴入到上述超声溶液中,磁力搅拌30min。然后,将溶液放入水热釜中,在100℃真空干燥箱中水热2h,即得到SnO2/三维多孔石墨烯;

(2)将所得的SnO2/三维多孔石墨烯样品和150mg盐酸多巴胺加入到75mL 10mmol/L的Tris缓冲溶液中,调节溶液pH值约为8,80℃搅拌12h,将所得到的沉淀离心,反复用无水乙醇清洗,再在100℃下真空干燥12h,即得到聚多巴胺(PDA)@SnO2/三维多孔石墨烯;

(3)将干燥的PDA@SnO2/三维多孔石墨烯粉末放入管式炉中,在氮气条件下,700℃热处理1h,升温速率为5℃/min,得到核壳结构的碳@SnO2@Sn纳米颗粒均匀地嫁接到三维多孔石墨烯表面,即碳@SnO2@Sn/三维多孔石墨烯复合材料。

2.性能分析:

图2为碳@SnO2@Sn/三维多孔石墨烯复合材料的X-射线衍射图。从图1可知,该复合材料中包含SnO2和单质Sn的XRD峰。图2为碳@SnO2@Sn/三维多孔石墨烯复合材料的XPS图。从图3可知,该复合材料含有C、N、Tin和O元素。图4和图5分别为碳@SnO2@Sn/三维多孔石墨烯复合材料的整体和大孔璧的TEM图像。从图4和5中可看出直径约为35nm的纳米颗粒均匀地嫁接到三维多孔石墨烯表面。图6为碳@SnO2@Sn/三维多孔石墨烯复合材料的高分辨TEM图像。从图6A和6B可知,纳米颗粒呈现出三层核壳型结构。进一步放大观察证实了该三层核壳型结构,其内层为Sn,中间层为SnO2,外层为碳层,如图6A1、6A2和6B1所示。图7为碳@SnO2@Sn/三维多孔石墨烯复合材料在充放电电流密度为0.1A/g(A)和1.0A/g(B)条件下的循环性能。从图7可知,该复合电极材料作为锂离子电池的负极材料,在0.1A/g的充放电电流密度下,循环200次后,比容量仍高达901mAh/g;1.0A/g下,循环500次后,比容量仍高达550mAh/g,表明碳@SnO2@Sn/三维多孔石墨烯纳米复合材料具有良好的循环稳定性。

实施例2

1.制备:

(1)将实施例1中制备的120mg三维多孔石墨烯粉末样品加入至580mL含有2.80mmol Sn(C2H3O2)4的N,N-二甲基酰胺中,在超声分散仪中超声15min。然后,量取50mL去离子水,在磁力搅拌下缓慢滴入到上述超声溶液中,磁力搅拌40min。然后,将溶液放入水热釜中,在120℃真空干燥箱中水热4h,即得到SnO2/三维多孔石墨烯;

(2)将所得的SnO2/三维多孔石墨烯样品和150mg盐酸多巴胺加入到80mL 8mmol/L的氨水中,调节溶液pH值约为10,80℃搅拌12h,将所得到的沉淀离心,反复用去离子水清洗,再在100℃下真空干燥8h,即得到聚多巴胺(PDA)@SnO2/三维多孔石墨烯;

(3)将干燥的PDA@SnO2/三维多孔石墨烯粉末放入管式炉中,在氩气条件下,800℃热处理1h,升温速率为5℃/min,得到核壳结构的碳@SnO2@Sn纳米颗粒均匀地嫁接到三维多孔石墨烯表面,即碳@SnO2@Sn/三维多孔石墨烯复合材料。

2.性能分析:碳@SnO2@Sn/三维多孔石墨烯复合材料作为钠离子电池负极,测得该材料在0.1A/g的充放电电流密度下,循环100次后,比容量仍高达769mAh/g,证实了碳@SnO2@Sn/三维多孔石墨烯纳米复合材料具有良好的循环稳定性。

实施例3

1.制备:

(1)将120mg三维多孔石墨烯粉末样品加入至600mL含有3.0mmol Sn(NO3)4的甲醇溶液中,在超声分散仪中超声15min。然后,量取50mL去离子水,在磁力搅拌下缓慢滴入到上述超声溶液中,磁力搅拌60min。然后,将溶液放入水热釜中,在140℃真空干燥箱中水热12h,即得到SnO2/三维多孔石墨烯。

(2)将所得的SnO2/三维多孔石墨烯样品和160mg苯胺加入到40mL 0.01M C6H8O7中,调节溶液pH值约为6,再缓慢滴加40mL 0.01M的NH4S2O8溶液至上述溶液中,80℃搅拌12h,将所得到的沉淀离心,反复用去离子水清洗,再在60℃下真空干燥10h,即得到聚苯胺(PANI)@SnO2/三维多孔石墨烯。

(3)将干燥的PANI@SnO2/三维多孔石墨烯粉末放入管式炉中,在氩气条件下,1000℃热处理2h,升温速率为10℃/min,得到核壳结构的碳@SnO2@Sn纳米颗粒均匀地嫁接到三维多孔石墨烯表面,即碳@SnO2@Sn/三维多孔石墨烯复合材料。

2.性能分析:碳@SnO2@Sn/三维多孔石墨烯复合材料作为锂离子电池负极,测得该材料在0.1A/g的充放电电流密度下,循环200次后,比容量仍高达890mAh/g,证实了碳@SnO2@Sn/三维多孔石墨烯纳米复合材料具有良好的循环稳定性。

实施例4

1.制备:

(1)将110mg三维多孔石墨烯粉末样品加入至580mL含有2.90mmol GeCl4的丙酮溶液中,在超声分散仪中超声15min。然后,量取45mL去离子水,在磁力搅拌下缓慢滴入到上述超声溶液中,磁力搅拌120min。然后,将溶液放入水热釜中,在120℃真空干燥箱中水热6h,即得到GeO2/三维多孔石墨烯。

(2)将所得的GeO2/三维多孔石墨烯样品和180mg吡咯加入到50mL 0.01M H2SO4中,调节溶液pH值约为4,再缓慢滴加50mL 0.01M的K2Cr2O7溶液至上述溶液中,80℃搅拌12h,将所得到的沉淀离心,反复用无水乙醇及去离子水清洗,再在80℃下真空干燥6h,即得到聚吡咯(PPy)@GeO2/三维多孔石墨烯。

(3)将干燥的PPy@GeO2/三维多孔石墨烯粉末放入管式炉中,在氦气条件下,800℃热处理6h,升温速率为8℃/min,得到核壳结构的碳@GeO2@Ge纳米颗粒均匀地嫁接到三维多孔石墨烯表面,即碳@GeO2@Ge/三维多孔石墨烯复合材料。

2.性能分析:碳@GeO2@Ge/三维多孔石墨烯复合材料作为锂离子电池负极,测得该材料在0.1A/g的充放电电流密度下,循环100次后,比容量仍高达1210mAh/g,证实了碳@GeO2@Ge/三维多孔石墨烯纳米复合材料具有良好的循环稳定性。

实施例5

1.制备:

(1)将100mg三维多孔石墨烯粉末样品加入至570mL含有2.8mmol SbCl3的乙二醇溶液中,在超声分散仪中超声15min。然后,将2.8mmol的SbCl3在磁力搅拌条件下缓慢滴入到上述超声溶液中。然后,量取40mL去离子水,在磁力搅拌下缓慢滴入到上述超声溶液中,磁力搅拌60min。然后,将溶液放入水热釜中,在120℃真空干燥箱中水热12h,即得到Sb2O3/三维多孔石墨烯。

(2)将所得的Sb2O3/三维多孔石墨烯样品和150mg噻吩加入到45mL 0.01M HCl中,调节溶液pH值约为5,再缓慢滴加45mL 0.01M的FeCl3溶液至上述溶液中,80℃搅拌12h,将所得到的沉淀离心,反复用无水乙醇清洗,再在60℃下真空干燥12h,即得到聚噻吩(PTh)@Sb2O3/三维多孔石墨烯。

(3)将干燥的PTh@Sb2O3/三维多孔石墨烯粉末放入管式炉中,在氩气条件下,700℃热处理3h,升温速率为5℃/min,得到三层核壳型结构的碳@Sb2O3@Sb纳米颗粒均匀地嫁接到三维多孔石墨烯表面,即碳@Sb2O3@Sb/三维多孔石墨烯复合材料。

2.性能分析:碳@Sb2O3@Sb/三维多孔石墨烯复合材料作为锂离子电池负极,测得该材料在0.1A/g的充放电电流密度下,循环1500次后,比容量仍高达723mAh/g,证实了碳@Sb2O3@Sb/三维多孔石墨烯纳米复合材料具有良好的循环稳定性。

实施例6

1.制备:

(1)将105mg三维多孔石墨烯粉末样品加入至580mL含有2.94mmol Sb(NO3)3的异丙醇溶液中,在超声分散仪中超声15min。然后,量取45mL去离子水,在磁力搅拌下缓慢滴入到上述超声溶液中,磁力搅拌50min。然后,将溶液放入水热釜中,在125℃真空干燥箱中水热8h,即得到Sb2O3/三维多孔石墨烯。

(2)将所得的Sb2O3/三维多孔石墨烯样品和160mg苯胺加入到40mL 0.01M H2SO4中,调节溶液pH值约为4,再缓慢滴加40mL 0.01M的NH4S3O8溶液至上述溶液中,80℃搅拌12h,将所得到的沉淀离心,反复用去离子水清洗,再在70℃下真空干燥8h,即得到聚苯胺(PANI)@Sb2O3/三维多孔石墨烯。

(3)将干燥的PANI@Sb2O3/三维多孔石墨烯粉末放入管式炉中,在氮气条件下,1000℃热处理2h,升温速率为10℃/min,得到核壳结构的碳@Sb2O3@Sb纳米颗粒均匀地嫁接到三维多孔石墨烯表面,即碳@Sb2O3@Sb/三维多孔石墨烯复合材料。

2.性能分析:碳@Sb2O3@Sb/三维多孔石墨烯复合材料作为钠离子电池负极,测得该材料在0.1A/g的充放电电流密度下,循环100次后,比容量仍高达620mAh/g,证实了碳@Sb2O3@Sb/三维多孔石墨烯纳米复合材料具有良好的循环稳定性。

上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合和简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

一种核壳结构的碳@金属氧化物@金属/三维多孔石墨烯复合材料及其制备方法和应用专利购买费用说明

专利买卖交易资料

Q:办理专利转让的流程及所需资料

A:专利权人变更需要办理著录项目变更手续,有代理机构的,变更手续应当由代理机构办理。

1:专利变更应当使用专利局统一制作的“著录项目变更申报书”提出。

2:按规定缴纳著录项目变更手续费。

3:同时提交相关证明文件原件。

4:专利权转移的,变更后的专利权人委托新专利代理机构的,应当提交变更后的全体专利申请人签字或者盖章的委托书。

Q:专利著录项目变更费用如何缴交

A:(1)直接到国家知识产权局受理大厅收费窗口缴纳,(2)通过代办处缴纳,(3)通过邮局或者银行汇款,更多缴纳方式

Q:专利转让变更,多久能出结果

A:著录项目变更请求书递交后,一般1-2个月左右就会收到通知,国家知识产权局会下达《转让手续合格通知书》。

动态评分

0.0

没有评分数据
没有评价数据
×

打开微信,点击底部的“发现”

使用“扫一扫”即可将网页分享至朋友圈

×
复制
用户中心
我的足迹
我的收藏

您的购物车还是空的,您可以

  • 微信公众号

    微信公众号
在线留言
返回顶部