专利摘要
本实用新型提供了一种成像镜头组和成像装置。成像镜头组包括依次间隔设置的第一成像镜头、第二成像镜头和第三成像镜头,第一成像镜头、第二成像镜头和第三成像镜头之间满足:1.0<Fno1<Fno2<Fno3<3.0;5.0mm>F1>F2>F3>1.0mm;P1<P2<P3;其中,Fno1为第一成像镜头的光圈数,Fno2为第二成像镜头的光圈数,Fno3为第三成像镜头的光圈数,F1为第一成像镜头的有效焦距,F2为第二成像镜头的有效焦距,F3为第三成像镜头的有效焦距,P1为第一成像镜头的物距,P2为第二成像镜头的物距,P3为第三成像镜头的物距。本实用新型解决了现有技术中成像装置存在较远场景中3D结构光的分辨率低的问题。
权利要求
1.一种成像镜头组,其特征在于,包括依次间隔设置的第一成像镜头(10)、第二成像镜头(20)和第三成像镜头(30),所述第一成像镜头(10)、所述第二成像镜头(20)和所述第三成像镜头(30)之间满足:
1.0<Fno1<Fno2<Fno3<3.0;
5.0mm>F1>F2>F3>1.0mm;
P1<P2<P3;
其中,Fno1为所述第一成像镜头的光圈数,Fno2为所述第二成像镜头的光圈数,Fno3为所述第三成像镜头的光圈数,F1为所述第一成像镜头的有效焦距,F2为所述第二成像镜头的有效焦距,F3为所述第三成像镜头的有效焦距,P1为所述第一成像镜头的物距,P2为所述第二成像镜头的物距,P3为所述第三成像镜头的物距。
2.根据权利要求1所述的成像镜头组,其特征在于,
所述第一成像镜头(10)包括至少三个具有正光焦度的透镜;
所述第二成像镜头(20)包括至少三个具有正光焦度的透镜;
所述第三成像镜头(30)包括至少三个具有正光焦度的透镜。
3.根据权利要求2所述的成像镜头组,其特征在于,
所述第一成像镜头(10)、所述第二成像镜头(20)和所述第三成像镜头(30)均具有至少一个透镜镜面为非球面的透镜;和/或
所述第三成像镜头的视场角Fov3大于所述第一成像镜头的视场角Fov1,且所述第三成像镜头的视场角Fov3大于所述第二成像镜头的视场角Fov2。
4.根据权利要求1至3中任一项所述的成像镜头组,其特征在于,所述第二成像镜头的物距P2大于等于500毫米且小于等于1500毫米。
5.根据权利要求1至3中任一项所述的成像镜头组,其特征在于,
所述第二成像镜头的有效焦距F2,所述第二成像镜头的第一透镜的有效焦距f21,所述第二成像镜头的第五透镜的有效焦距f25和所述第二成像镜头的第六透镜的有效焦距f26之间满足0.7<F2/(f21+f25+f26)<1.0;和/或
所述第二成像镜头的第二透镜的第二透镜物侧面的曲率半径R23、所述第二成像镜头的所述第二透镜的第二透镜像侧面的曲率半径R24、所述第二成像镜头的第一透镜的第一透镜物侧面的曲率半径R21和所述第二成像镜头的所述第一透镜的第一透镜像侧面的曲率半径R22之间满足0.4<(R23+R24)/(R21+R22)<0.8。
6.根据权利要求1至3中任一项所述的成像镜头组,其特征在于,所述第二成像镜头的第一透镜的第一透镜物侧面与所述第二成像镜头的成像面在所述第二成像镜头的光轴上的距离TTL2,所述第二成像镜头的成像面上有效像素区域对角线长的一半ImgH2之间满足TTL2/ImgH2<1.65。
7.根据权利要求1至3中任一项所述的成像镜头组,其特征在于,所述第三成像镜头的第一透镜的有效焦距f31、所述第三成像镜头的第二透镜的有效焦距f32、所述第三成像镜头的第三透镜的有效焦距f33、所述第三成像镜头的第四透镜的有效焦距f34、所述第三成像镜头的第五透镜的有效焦距f35和所述第三成像镜头的第六透镜的有效焦距f36之间满足-1.0<(f31+f34+f36)/(f32+f33+f35)<-0.4。
8.根据权利要求1至3中任一项所述的成像镜头组,其特征在于,所述第三成像镜头的第五透镜的第五透镜物侧面的曲率半径R39、所述第三成像镜头的第五透镜的第五透镜像侧面的曲率半径R310之间满足0.6<(R39+R310)/(R39+R310)<0.9。
9.根据权利要求1至3中任一项所述的成像镜头组,其特征在于,所述第一成像镜头的光轴、所述第二成像镜头的光轴和所述第三成像镜头的光轴均不同轴。
10.一种成像装置,其特征在于,包括权利要求1至9中任一项所述的成像镜头组。
说明书
技术领域
本实用新型涉及光学镜头成像技术领域,具体而言,涉及一种成像镜头组和成像装置。
背景技术
近几年来,随着三维深度应用逐步兴起,芯片技术与智能算法迅速发展,利用结构光镜头将红外LD(激光二极管)或VCSEL(垂直腔面发射激光器)发出的光向交互目标物投射,投影光束再经过光学衍射元件(DOE)后实现投影图像在目标物重新分布,再用摄像镜头将投射到物体上的图案接收回来,经过一定算法处理,即可计算出包含被投射物体位置深度信息的三维图像。3D结构光需要主动发射经过预先设计并具有高精度的固定斑点图案,因此具有可用于黑暗环境、测量精度高、分辨率高等优点,但同样具有测量距离较近的本质缺点。一旦场景距离较远,例如到了室外场景中或场景的深度超过1-10m,则光学图案的弥散斑会不断扩大,导致失焦以及误差增大。
也就是说,现有技术中成像装置存在较远场景中3D结构光的分辨率低的问题。
实用新型内容
本实用新型的主要目的在于提供一种成像镜头组和成像装置,以解决现有技术中成像装置存在较远场景中3D结构光的分辨率低的问题。
为了实现上述目的,根据本实用新型的一个方面,提供了一种成像镜头组,包括依次间隔设置的第一成像镜头、第二成像镜头和第三成像镜头,第一成像镜头、第二成像镜头和第三成像镜头之间满足:1.0<Fno1<Fno2<Fno3<3.0;5.0mm>F1>F2>F3>1.0mm;P1<P2<P3;其中,Fno1为第一成像镜头的光圈数,Fno2为第二成像镜头的光圈数,Fno3为第三成像镜头的光圈数,F1为第一成像镜头的有效焦距,F2为第二成像镜头的有效焦距,F3为第三成像镜头的有效焦距,P1为第一成像镜头的物距,P2为第二成像镜头的物距,P3为第三成像镜头的物距。
进一步地,第一成像镜头包括至少三个具有正光焦度的透镜;第二成像镜头包括至少三个具有正光焦度的透镜;第三成像镜头包括至少三个具有正光焦度的透镜。
进一步地,第一成像镜头包括至少五个塑胶透镜;第二成像镜头包括至少五个塑胶透镜;第三成像镜头包括至少五个塑胶透镜。
进一步地,第一成像镜头、第二成像镜头和第三成像镜头均具有至少一个透镜镜面为非球面的透镜。
进一步地,第三成像镜头的视场角Fov3大于第一成像镜头的视场角Fov1,且第三成像镜头的视场角Fov3大于第二成像镜头的视场角Fov2。
进一步地,第一成像镜头中任意两相邻透镜在第一成像镜头的光轴上均具有空气间隔;第二成像镜头中任意两相邻透镜在第一成像镜头的光轴上均具有空气间隔;第三成像镜头中任意两相邻透镜在第一成像镜头的光轴上均具有空气间隔。
进一步地,第二成像镜头的物距P2大于等于500毫米且小于等于1500毫米。
进一步地,第二成像镜头的有效焦距F2,第二成像镜头的第一透镜的有效焦距f21,第二成像镜头的第五透镜的有效焦距f25和第二成像镜头的第六透镜的有效焦距f26之间满足0.7<F2/(f21+f25+f26)<1.0。
进一步地,第二成像镜头的第二透镜的第二透镜物侧面的曲率半径R23、第二成像镜头的第二透镜的第二透镜像侧面的曲率半径R24、第二成像镜头的第一透镜的第一透镜物侧面的曲率半径R21和第二成像镜头的第一透镜的第一透镜像侧面的曲率半径R22之间满足0.4<(R23+R24)/(R21+R22)<0.8。
进一步地,第二成像镜头中第一透镜的第一透镜物侧面与第二成像镜头的成像面在第二成像镜头的光轴上的距离TTL2,第二成像镜头的成像面上有效像素区域对角线长的一半ImgH2之间满足TTL2/ImgH2<1.65。
进一步地,第三成像镜头的第一透镜的有效焦距f31、第三成像镜头的第二透镜的有效焦距f32、第三成像镜头的第三透镜的有效焦距f33、第三成像镜头的第四透镜的有效焦距f34、第三成像镜头的第五透镜的有效焦距f35和第三成像镜头的第六透镜的有效焦距f36之间满足-1.0<(f31+f34+f36)/(f32+f33+f35)<-0.4。
进一步地,第三成像镜头的第五透镜的第五透镜物侧面的曲率半径R39、第三成像镜头的第五透镜的第五透镜像侧面的曲率半径R310之间满足0.6<(R39+R310)/(R39+R310)<0.9。
进一步地,第一成像镜头的光轴、第二成像镜头的光轴和第三成像镜头的光轴均不同轴。
根据本实用新型的另一方面,提供了一种成像装置,包括上述的成像镜头组。
应用本实用新型的技术方案,成像镜头组包括依次间隔设置的第一成像镜头、第二成像镜头和第三成像镜头,第一成像镜头的光圈数Fno1、第二成像镜头的光圈数Fno2和第三成像镜头的光圈数Fno3之间满足1.0<Fno1<Fno2<Fno3<3.0;第一成像镜头的有效焦距F1、第二成像镜头的有效焦距F2和第三成像镜头的有效焦距F3之间满足5.0mm>F1>F2>F3>1.0mm;第一成像镜头的物距P1、第二成像镜头的物距P2和第三成像镜头的物距P3之间满足P1<P2<P3。
通过将第一成像镜头、第二成像镜头和第三成像镜头的光圈数、焦距和物距布置成不同的梯度,使得三个成像镜头的景深和探测的距离具有不同的范围,最终获得的深度图可以使用三个深度图的加权组合,以增加成像镜头组成像的分辨率。当然也可以采用对成像镜头组中的镜头的权重的分配不同以使成像镜头组中成像更清晰的镜头的权重所占的比例大,以增加成像镜头组的景深和成像的分辨率。这样可以让三个镜头中由于景深和探测距离不对应而造成的部分低清晰区域得到补偿,还可以弥补单个镜头的深度图中可能出现的噪点、空白点或者数据错误点,以实现成像镜头组在针对不同距离下的不同形状分布的景物都可以改善其成像的分辨率。
附图说明
构成本申请的一部分的说明书附图用来提供对本实用新型的进一步理解,本实用新型的示意性实施例及其说明用于解释本实用新型,并不构成对本实用新型的不当限定。在附图中:
图1示出了本实用新型实施例一中第一成像镜头的结构示意图;以及
图2示出了图1中第一成像镜头的轴上色差曲线;
图3示出了图1中第一成像镜头的象散曲线;
图4示出了图1中第一成像镜头的畸变曲线;
图5示出了图1中第一成像镜头的倍率色差曲线;
图6示出了本实用新型实施例二中第一成像镜头的结构示意图;
图7示出了图6中第一成像镜头的轴上色差曲线;
图8示出了图6中第一成像镜头的象散曲线;
图9示出了图6中第一成像镜头的畸变曲线;
图10示出了图6中第一成像镜头的倍率色差曲线;
图11示出了本实用新型实施例三中第一成像镜头的结构示意图;
图12示出了图11中第一成像镜头的轴上色差曲线;
图13示出了图11中第一成像镜头的象散曲线;
图14示出了图11中第一成像镜头的畸变曲线;
图15示出了图11中第一成像镜头的倍率色差曲线;
图16示出了本实用新型实施例四中第二成像镜头的结构示意图;
图17示出了图16中第二成像镜头的轴上色差曲线;
图18示出了图16中第二成像镜头的象散曲线;
图19示出了图16中第二成像镜头的畸变曲线;
图20示出了图16中第二成像镜头的倍率色差曲线;
图21示出了本实用新型实施例五中第二成像镜头的结构示意图;
图22示出了图21中第二成像镜头的轴上色差曲线;
图23示出了图21中第二成像镜头的象散曲线;
图24示出了图21中第二成像镜头的畸变曲线;
图25示出了图21中第二成像镜头的倍率色差曲线;
图26示出了本实用新型实施例六中第二成像镜头的结构示意图;
图27示出了图26中第二成像镜头的轴上色差曲线;
图28示出了图26中第二成像镜头的象散曲线;
图29示出了图26中第二成像镜头的畸变曲线;
图30示出了图26中第二成像镜头的倍率色差曲线;
图31示出了本实用新型实施例七中第三成像镜头的结构示意图;
图32示出了图31中第三成像镜头的轴上色差曲线;
图33示出了图31中第三成像镜头的象散曲线;
图34示出了图31中第三成像镜头的畸变曲线;
图35示出了图31中第三成像镜头的倍率色差曲线;
图36示出了本实用新型实施例八中第三成像镜头的结构示意图;
图37示出了图36中第三成像镜头的轴上色差曲线;
图38示出了图36中第三成像镜头的象散曲线;
图39示出了图36中第三成像镜头的畸变曲线;
图40示出了图36中第三成像镜头的倍率色差曲线;
图41示出了本实用新型实施例九中第三成像镜头的结构示意图;
图42示出了图41中第三成像镜头的轴上色差曲线;
图43示出了图41中第三成像镜头的象散曲线;
图44示出了图41中第三成像镜头的畸变曲线;
图45示出了图41中第三成像镜头的倍率色差曲线;
图46示出了本实用新型的成像装置的结构示意图。
其中,上述附图包括以下附图标记:
10、第一成像镜头;20、第二成像镜头;30、第三成像镜头;E11、第一成像镜头的第一透镜;S11、第一成像镜头的第一透镜的第一透镜物侧面;S12、第一成像镜头的第一透镜的第一透镜像侧面;E12、第一成像镜头的第二透镜;S13、第一成像镜头的第二透镜的第二透镜物侧面;S14、第一成像镜头的第二透镜的第二透镜像侧面;E13、第一成像镜头的第三透镜;S15、第一成像镜头的第三透镜的第三透镜物侧面;S16、第一成像镜头的第三透镜的第三透镜像侧面;E14、第一成像镜头的第四透镜;S17、第一成像镜头的第四透镜的第四透镜物侧面;S18、第一成像镜头的第四透镜的第四透镜像侧面;E15、第一成像镜头的第五透镜;S19、第一成像镜头的第五透镜的第五透镜物侧面;S110、第一成像镜头的第五透镜的第五透镜像侧面;E16、第一成像镜头的第六透镜;S111、第一成像镜头的第六透镜的第六透镜物侧面;S112、第一成像镜头的第六透镜的第六透镜像侧面;E17、第一成像镜头的滤波片;S113、第一成像镜头的滤波片物侧面;S114、第一成像镜头的滤波片像侧面;S115、第一成像镜头的成像面;E18、第一成像镜头的第七透镜;S116、第一成像镜头的第七透镜的第七透镜物侧面;S117、第一成像镜头的第七透镜的第七透镜像侧面;STO1、第一成像镜头的光阑;E21、第二成像镜头的第一透镜;S21、第二成像镜头的第一透镜的第一透镜物侧面;S22、第二成像镜头的第一透镜的第一透镜像侧面;E22、第二成像镜头的第二透镜;S23、第二成像镜头的第二透镜的第二透镜物侧面;S24、第二成像镜头的第二透镜的第二透镜像侧面;E23、第二成像镜头的第三透镜;S25、第二成像镜头的第三透镜的第三透镜物侧面;S26、第二成像镜头的第三透镜的第三透镜像侧面;E24、第二成像镜头的第四透镜;S27、第二成像镜头的第四透镜的第四透镜物侧面;S28、第二成像镜头的第四透镜的第四透镜像侧面;E25、第二成像镜头的第五透镜;S29、第二成像镜头的第五透镜的第五透镜物侧面;S210、第二成像镜头的第五透镜的第五透镜像侧面;E26、第二成像镜头的第六透镜;S211、第二成像镜头的第六透镜的第六透镜物侧面;S212、第二成像镜头的第六透镜的第六透镜像侧面;E27、第二成像镜头的滤波片;S213、第二成像镜头的滤波片物侧面;S214、第二成像镜头的滤波片像侧面;S215、第二成像镜头的成像面;STO2、第二成像镜头的光阑;E31、第三成像镜头的第一透镜;S31、第三成像镜头的第一透镜的第一透镜物侧面;S32、第三成像镜头的第一透镜的第一透镜像侧面;E32、第三成像镜头的第二透镜;S33、第三成像镜头的第二透镜的第二透镜物侧面;S34、第三成像镜头的第二透镜的第二透镜像侧面;E33、第三成像镜头的第三透镜;S35、第三成像镜头的第三透镜的第三透镜物侧面;S36、第三成像镜头的第三透镜的第三透镜像侧面;E34、第三成像镜头的第四透镜;S37、第三成像镜头的第四透镜的第四透镜物侧面;S38、第三成像镜头的第四透镜的第四透镜像侧面;E35、第三成像镜头的第五透镜;S39、第三成像镜头的第五透镜的第五透镜物侧面;S310、第三成像镜头的第五透镜的第五透镜像侧面;E36、第三成像镜头的第六透镜;S311、第三成像镜头的第六透镜的第六透镜物侧面;S312、第三成像镜头的第六透镜的第六透镜像侧面;E37、第三成像镜头的滤波片;S313、第三成像镜头的滤波片物侧面;S314、第三成像镜头的滤波片像侧面;S315、第三成像镜头的成像面;STO3、第三成像镜头的光阑。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本实用新型。
需要指出的是,除非另有指明,本申请使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
在本实用新型中,在未作相反说明的情况下,使用的方位词如“上、下、顶、底”通常是针对附图所示的方向而言的,或者是针对部件本身在竖直、垂直或重力方向上而言的;同样地,为便于理解和描述,“内、外”是指相对于各部件本身的轮廓的内、外,但上述方位词并不用于限制本实用新型。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示出的球面或非球面的形状通过实例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜靠近物侧的表面成为该透镜的物侧面,每个透镜靠近像侧的表面称为该透镜的像侧面。在近轴区域的面形的判断可依据该领域中通常知识者的判断方式,以R值,(R指近轴区域的曲率半径,通常指光学软件中的透镜数据库(lens data)上的R值)正负判断凹凸。以物侧面来说,当R值为正时,判定为凸面,当R值为负时,判定为凹面;以像侧面来说,当R值为正时,判定为凹面,当R值为负时,判定为凸面。
为了解决现有技术中成像装置存在较远场景中3D结构光的分辨率低的问题,本实用新型提供了一种成像镜头组和成像装置。
如图1至图46所示,成像镜头组包括依次间隔设置的第一成像镜头10、第二成像镜头20和第三成像镜头30,第一成像镜头的光圈数Fno1、第二成像镜头的光圈数Fno2和第三成像镜头的光圈数Fno3之间满足1.0<Fno1<Fno2<Fno3<3.0;第一成像镜头的有效焦距F1、第二成像镜头的有效焦距F2和第三成像镜头的有效焦距F3之间满足5.0mm>F1>F2>F3>1.0mm;第一成像镜头的物距P1、第二成像镜头的物距P2和第三成像镜头的物距P3之间满足P1<P2<P3。
通过将第一成像镜头10、第二成像镜头20和第三成像镜头30的光圈数、焦距和物距布置成不同的梯度,使得三个成像镜头的景深和探测的距离具有不同的范围,最终获得的深度图可以使用三个深度图的加权组合,以增加成像镜头组成像的分辨率。当然也可以采用对成像镜头组中的镜头的权重的分配不同以使成像镜头组中成像更清晰的镜头的权重所占的比例大,以增加成像镜头组的景深和成像的分辨率。这样可以让三个成像镜头中由于景深和探测距离不对应而造成的部分低清晰区域得到补偿,还可以弥补单个成像镜头的深度图中可能出现的噪点、空白点或者数据错误点,以实现成像镜头组在针对不同距离下的不同形状分布的景物都可以改善其成像的分辨率。
具体的,选择第二成像镜头作为预定镜头,预定镜头形成的图像误差为a2,第一成像镜头形成的图像误差为a1,第三成像镜头形成的图像误差为a3,将a1、a2和a3进行比较,当a1>a2,且a3>a2时,增加预定镜头形成的图像的对应的深度的权重,当a1<a2且a3>a2时,增加第一成像镜头的图像对应的深度的权重;当a1>a2且a3<a2时,增加第三成像镜头形成的图像对应的深度的权重;当a1<a2且a3<a2时,同时增加第一成像镜头形成的图像对应的深度的权重和第三成像镜头形成的图像对应的深度的权重。预定镜头形成的图像的对比度为b2,第一成像镜头形成的图像的对比度为b1,第三成像镜头形成的图像的对比度b3,将b1、b2和b3进行比较,当b1<b2且b3<b2时,增加预定镜头形成的图像对应的深度的权重,当b1<b2且b3>b2时,增加第三成像镜头形成的图像对应的深度的权重,当b1>b2且b3<b2时,增加第一成像镜头形成的图像对应的深度的权重,当b1>b2且b3>b2时,同时增加第一成像镜头形成的图像对应的深度的权重和第三成像镜头形成的图像对应的深度的权重。需要说明的是,上述的预定镜头可以是第一成像镜头或第三成像镜头,仅仅是以第二成像镜头作为预定镜头进行说明,而形成图像误差为a1的成像镜头也可以是第三成像镜头或第二成像镜头,并不仅仅是第一成像镜头,为了便于说明将a1对应到第一成像镜头、a3对应到第三成像镜头。
需要说的是,成像镜头组可以根据成像镜头组采集的图像的位置、明亮度、景深、分辨率等选取三个成像镜头中所需要的镜头进行拍摄成像。
具体的,第一成像镜头10包括至少三个具有正光焦度的透镜;第二成像镜头20包括至少三个具有正光焦度的透镜;第三成像镜头30包括至少三个具有正光焦度的透镜。合理配置每个成像镜头的光焦度,能够减小光线在透镜之间的偏折角度,降低透镜的敏感性,从而放宽公差条件,降低成像镜头组的工艺难度,便于成像镜头组的制作。
可选地,第一成像镜头10包括至少五个塑胶透镜;第二成像镜头20包括至少五个塑胶透镜;第三成像镜头30包括至少五个塑胶透镜。合理配置三个成像镜头中的透镜的材料,可以节约材料成本、简化工艺流程,还可以减小成像镜头的重量,满足成像镜头轻薄化的趋势。
第一成像镜头10、第二成像镜头20和第三成像镜头30均具有至少一个透镜镜面为非球面的透镜。在成像镜头中引入非球面镜面不仅可以大大增加光学设计时的自由度,还能校正大部分像差(球差、慧差、场区、畸变等),进一步提高成像镜头组的成像质量。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。
第三成像镜头的视场角Fov3大于第一成像镜头的视场角Fov1,且第三成像镜头的视场角Fov3大于第二成像镜头的视场角Fov2。这样设置可以提高成像镜头组成像的像高,还可以避免成像镜头组边缘视场的像差过大的情况,以使成像镜头组具有成像范围广、成像质量高的特点,有效地增加了成像镜头组在成像时的视野范围,增加了用户的拍摄体验效果。
具体的,第一成像镜头中任意两相邻透镜在第一成像镜头的光轴上均具有空气间隔;第二成像镜头中任意两相邻透镜在第二成像镜头的光轴上均具有空气间隔;第三成像镜头中任意两相邻透镜在第三成像镜头的光轴上均具有空气间隔。合理配置三个成像镜头中相邻透镜之间的空气间隔,可以缓和光线在透镜之间的偏折,还可以减少组装时相邻透镜之间发生碰撞,减少了透镜的划伤。当然可以根据需要在相邻透镜的空气间隔处加入隔片或隔圈,这样可以增强成像镜头结构的稳固性,使得成像镜头保持小型化的同时还能改善系统杂散光。
第二成像镜头的物距P2大于等于500毫米且小于等于1500毫米。由于场景距离由近至远时,光学图案的弥散斑会不断扩大,极易导致失焦和误差,合理控制第二成像镜头20中物体到第二透镜的第一透镜物侧面在第二成像镜头的光轴上的距离,使得第二成像镜头20初始权重较大,根据第二成像镜头20实时测得的景深,以实时增减第一成像镜头10和第三成像镜头的权重,以有效提高成像效率和帧数,增加成像的清晰度。
第二成像镜头的有效焦距F2,第二成像镜头的第一透镜的有效焦距f21,第二成像镜头的第五透镜的有效焦距f25和第二成像镜头的第六透镜的有效焦距f26之间满足0.7<F2/(f21+f25+f26)<1.0。合理控制此条件式的范围,可以避免光焦度过度集中,可以很好地提升系统像差矫正能力,同时还可以有效地降低第二成像镜头的尺寸,以实现第二成像镜头的轻薄化。
具体的,第二成像镜头的第二透镜的第二透镜物侧面的曲率半径R23、第二成像镜头的第二透镜的第二透镜像侧面的曲率半径R24、第二成像镜头的第一透镜的第一透镜物侧面的曲率半径R21和第二成像镜头的第一透镜的第一透镜像侧面的曲率半径R22之间满足0.4<(R23+R24)/(R21+R22)<0.8。通过控制第二成像镜头的第一透镜与第二成像镜头的第二透镜的曲率半径,使得第二成像镜头20能够较好地实现光路的偏折,以平衡第二成像镜头20产生的高级球差。
第二成像镜头20中第一透镜的第一透镜物侧面与第二成像镜头的成像面在第二成像镜头的光轴上的距离TTL2,第二成像镜头的成像面上有效像素区域对角线长的一半ImgH2之间满足TTL2/ImgH2<1.65。通过控制第二成像镜头20中第一透镜的第一透镜物侧面与第二成像镜头的成像面在第二成像镜头的光轴上的距离与第二成像镜头的成像面上有效像素区域对角线长的一半的比值在合理的范围内,使得第二成像镜头的光学系统具有较短长度的条件下,可以保证第二成像镜头的光学系统具有足够大的像面,以呈现被拍摄物更多的细节信息,使得成像更加清晰。
第三成像镜头的第一透镜的有效焦距f31、第三成像镜头的第二透镜的有效焦距f32、第三成像镜头的第三透镜的有效焦距f33、第三成像镜头的第四透镜的有效焦距f34、第三成像镜头的第五透镜的有效焦距f35和第三成像镜头的第六透镜的有效焦距f36之间满足-1.0<(f31+f34+f36)/(f32+f33+f35)<-0.4。通过合理分配第三成像镜头的各个透镜的光焦度,能够合理地控制各个透镜的场曲的贡献量,使得第三成像镜头的场曲控制在合理的范围内。
第三成像镜头的第五透镜的第五透镜物侧面的曲率半径R39、第三成像镜头的第五透镜的第五透镜像侧面的曲率半径R310之间满足0.6<(R39+R310)/(R39+R310)<0.9。这样设置可以合理的控制第三成像镜头的光学成像系统边缘光线的偏转角,能有效的降低第三成像镜头的光学成像系统的敏感度。
第一成像镜头的光轴、第二成像镜头的光轴和第三成像镜头的光轴均不同轴。这样设置便于比对三个成像镜头的高度差,方便模组的装配。在装配时,三个成像镜头选择合适的TTL总长,使得三个成像镜头的高度差在合理的范围内。
本申请中的成像镜头组能够提高在较远距离场景中3D结构光深度检测分辨率,实现获得更准确有效的深度图像。
可选地,成像装置包括上述的成像镜头组。成像装置可以拍摄多个景深的物体,增加了成像装置成像的清晰度。成像装置可以是手机、平板、电脑。
下面参照附图进一步描述可适用于上述实施方式的成像镜头组的具体面型、参数的举例。需要说明的是,实施例一至实施例三主要是对第一成像镜头10的举例、实施例四至六主要是对第二成像镜头20的举例,实施例七至实施例九主要是对第三成像镜头30的举例。实施例中的第一成像镜头10、第二成像镜头20、第三成像镜头30可以任意组合。当然也可以与其他未在本申请中提及的实施例进行组合,只需满足上述的一些条件式即可。
实施例一
需要说明的是,在本实施例中是对第一成像镜头10进行的限定。
如图1所示,第一成像镜头10沿光轴由物侧至像侧依次包括:第一成像镜头的第一透镜E11、第一成像镜头的第二透镜E12、第一成像镜头的光阑STO1、第一成像镜头的第三透镜E13、第一成像镜头的第四透镜E14、第一成像镜头的第五透镜E15、第一成像镜头的第六透镜E16、第一成像镜头的滤波片E17和第一成像镜头的成像面S115。
第一成像镜头的第一透镜E11具有负光焦度,第一成像镜头的第一透镜的第一透镜物侧面S11为凸面,第一成像镜头的第一透镜的第一透镜像侧面S12为凹面;第一成像镜头的第二透镜E12具有正光焦度,第一成像镜头的第二透镜的第二透镜物侧面S13为凸面,第一成像镜头的第二透镜的第二透镜像侧面S14为凹面;第一成像镜头的第三透镜E13具有正光焦度,第一成像镜头的第三透镜的第三透镜物侧面S15为凸面,第一成像镜头的第三透镜的第三透镜像侧面S16为凸面;第一成像镜头的第四透镜E14具有负光焦度,第一成像镜头的第四透镜的第四透镜物侧面S17为凹面,第一成像镜头的第四透镜的第四透镜像侧面S18为凹面;第一成像镜头的第五透镜E15具有正光焦度,第一成像镜头的第五透镜的第五透镜物侧面S19为凸面,第一成像镜头的第五透镜的第五透镜像侧面S110为凸面;第一成像镜头的第六透镜E16具有正光焦度,第一成像镜头的第六透镜的第六透镜物侧面S111为凸面,第一成像镜头的第六透镜的第六透镜像侧面S112为凹面。第一成像镜头的滤波片E17具有第一成像镜头的滤波片物侧面S113和第一成像镜头的滤波片像侧面S114。来自物体的光依次穿过各表面最终成像在第一成像镜头的成像面S115上。表一示出了本实施例中第一成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米。
表一:本实施例中第一成像镜头的详细光学数据
在本例子中,各透镜均可采用非球面透镜,各非球面面型x由以下公式限定:
其中,x为非球面沿光轴方向在高度为h的位置时距非球面顶点的距离矢高;c为非球面的近轴曲率, (即近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在表1中已给出);Ai是非球面第i-th阶的修正系数。
表二示出了可用于该实施中的第一成像镜头的各非球面透镜的各非球面的高次项系数。
表二:本实施例中第一成像镜头的各非球面的的高次项系数
表三给出了本实施例中第一成像镜头的有效焦距F1,第一成像镜头的各透镜的有效焦距f11至f16、第一成像镜头的第一透镜物侧面S11至第一成像镜头的成像面S115在光轴上的距离TTL1和第一成像镜头的成像面上有效像素区域对角线长的一半ImgH1,第一成像镜头的光圈数Fno1,第一成像镜头的物距P1以及第一成像镜头的最大半市场角Semi-FOV1。
表三:光学成像镜头的参数
在实施例中,第一成像镜头10从第一成像镜头的第一透镜的第一透镜物侧面S11至第一成像镜头的成像面S115在光轴上的长度为14.85mm,第一成像镜头的有效焦距为4.25mm,第一成像镜头的像高为7.62mm,第一成像镜头的最大半视场角为60.2度,第一成像镜头的光圈值为1.94,第一成像镜头的物距125mm。本例子在保证光学成像镜头小型化的同时,保证了较大的光圈,能够获取更多的进光量,在光线不足时降低光学像差,提升图像采集品质,获取稳定的成像效果。需要说明的是,光圈值越大光圈越小,光圈值越小,光圈越大。
图2示出了本实施例中的第一成像镜头10上的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离,使得最后成像的时候不同波长的光的像焦面不能重合,复色光散开形成色散。图3示出了本实施例中的第一成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4示出了本实施例中的第一成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图5示出了本实施例中的第一成像镜头的倍率色差曲线,其表示光线经由光学成像镜头后在成像面上的不同像高的相差。从图2至图5中可以看出,本实施例中的第一成像镜头10适用于便捷式电子产品,具有大孔径和良好的成像质量。
实施例二
需要说明的是,在实施例二中是对第一成像镜头10进行的限定。
如图6所示,第一成像镜头10沿光轴由物侧至像侧依次包括:第一成像镜头的光阑STO1、第一成像镜头的第一透镜E11、第一成像镜头的第二透镜E12、第一成像镜头的第三透镜E13、第一成像镜头的第四透镜E14、第一成像镜头的第五透镜E15、第一成像镜头的第六透镜E16、第一成像镜头的滤波片E17和第一成像镜头的成像面S115。
第一成像镜头的第一透镜E11具有正光焦度,第一成像镜头的第一透镜的第一透镜物侧面S11为凸面,第一成像镜头的第一透镜的第一透镜像侧面S12为凹面;第一成像镜头的第二透镜E12具有负光焦度,第一成像镜头的第二透镜的第二透镜物侧面S13为凸面,第一成像镜头的第二透镜的第二透镜像侧面S14为凹面;第一成像镜头的第三透镜E13具有正光焦度,第一成像镜头的第三透镜的第三透镜物侧面S15为凸面,第一成像镜头的第三透镜的第三透镜像侧面S16为凸面;第一成像镜头的第四透镜E14具有负光焦度,第一成像镜头的第四透镜的第四透镜物侧面S17为凹面,第一成像镜头的第四透镜的第四透镜像侧面S18为凸面;第一成像镜头的第五透镜E15具有正光焦度,第一成像镜头的第五透镜的第五透镜物侧面S19为凸面,第一成像镜头的第五透镜的第五透镜像侧面S110为凹面;第一成像镜头的第六透镜E16具有负光焦度,第一成像镜头的第六透镜的第六透镜物侧面S111为凸面,第一成像镜头的第六透镜的第六透镜像侧面S112为凹面。第一成像镜头的滤波片E17具有第一成像镜头的滤波片物侧面S113和第一成像镜头的滤波片像侧面S114。来自物体的光依次穿过各表面最终成像在第一成像镜头的成像面S115上。表四示出了本实施例中第一成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米。
表四:本实施例中第一成像镜头的详细光学数据
表五示出了可用于该实施中的第一成像镜头的各非球面透镜的各非球面的高次项系数。
表五:本实施例中第一成像镜头的各非球面的的高次项系数
Q:办理专利转让的流程及所需资料
A:专利权人变更需要办理著录项目变更手续,有代理机构的,变更手续应当由代理机构办理。
1:专利变更应当使用专利局统一制作的“著录项目变更申报书”提出。
2:按规定缴纳著录项目变更手续费。
3:同时提交相关证明文件原件。
4:专利权转移的,变更后的专利权人委托新专利代理机构的,应当提交变更后的全体专利申请人签字或者盖章的委托书。
Q:专利著录项目变更费用如何缴交
A:(1)直接到国家知识产权局受理大厅收费窗口缴纳,(2)通过代办处缴纳,(3)通过邮局或者银行汇款,更多缴纳方式
Q:专利转让变更,多久能出结果
A:著录项目变更请求书递交后,一般1-2个月左右就会收到通知,国家知识产权局会下达《转让手续合格通知书》。
动态评分
0.0