专利摘要
专利摘要
本文提供了一种具有并网双向转换器和谐振转换器的聚变能量提取电路(FEEC)装置。所述谐振转换器可包括带有两个或更多个挡板或者四重挡板的逆回旋加速转换器和多个电路开关。所述双向转换器可包括三相并网转换器。所述FEEC装置能够使等离子粒子束减速,由此从该减速中提取能量,将所提取的能量转换为电能,并且将所述电能发送到电网。
说明书
技术领域
本发明大体上涉及电路,并且更具体地涉及便于从作为受控的聚变反应的结果的带电粒子中提取能量并且根据需要以整功率因数、超前功率因数或滞后功率因数将所述能量发送到电网的电路。
背景技术
受控的聚变发电将使充裕而清洁的能源成为可能。此项课题在美国及世界引起了重要的研究工作。所报导的方法典型地基于将聚变能量转换为热能,然后转换为电能。
在发明名称为“以场反转构造的受控聚变和直接能量转换(Controlled fusion in a field reversed configuration and direct energy conversion)”的美国专利No. 6,611,106('106专利)(以引用的方式将其并入本文)所描述的可替换方法中,可通过利用四极(quadropole)逆回旋加速转换器(ICC: inverse cyclotron converter)使带电粒子减速而将带电粒子束以动量形式所携带的受控聚变能量直接转换成电力。这样,预期可得到更高的能量转化率。所需要的关键技术是从ICC中提取能量并将其注入公用电网(utility grid)。
因此,所期望的是提供一种被用于使等离子粒子减速、从该减速效应中提取能量、将该等离子能量直接转换为电能并且将该电力发送到电网的功率电子电路。
发明内容
本文所描述的聚变能量提取电路(FEEC)装置的示例性实施例仅代表所述FEEC装置的许多可能的实现的几个例子,而绝不是意图限制本说明书的主题。
在一个实施例中,所述FEEC装置优选地包括并网双向转换器组件和谐振转换器组件。所述双向转换器组件可以为了不同的目的而实现超前相位、滞后相位或整功率因数并网转换器。
所述谐振转换器优选地包括逆回旋加速转换器(ICC)、电感器以及多个电路开关,所述多个电路开关形成将直流电压斩波(chop)为脉冲波形的电桥。所述ICC优选地被构造为具有起电容器作用的两个或更多个挡板(plate)或者四极挡板,其与电感器共同起谐振回路的作用。所述挡板优选地是伸长的,这些挡板的弓形横截面形成伸长的环形圆筒腔室,并且在所述挡板之间形成轴向延伸的伸长间隙。
在所述FEEC装置的启动期间,能量从所述公用电网经由所述并网双向转换器组件流向所述谐振转换器。这建立了谐振并且激发了跨所述挡板之间的间隙所形成的四极电场。在发电或能量提取期间,来自例如聚变过程的带电粒子束的带电粒子随着粒子束穿过所述ICC而被所述四极电场减速。同样在发电期间,所述ICC的四极挡板将以镜像电流的形式收集损失的能量。然后,所述镜像电流将经由所述谐振转换器和所述并网双向转换器组件流向所述公用电网。
所述并网转换器在启动时间期间起交流/直流整流器的作用,而在发电期间起直流/交流并网逆变器的作用。在这两种情况下,所述并网转换器将根据需要以整功率因数、超前功率因数或滞后功率因数进行操作,从而提供有功功率和无功功率(VAR)。
为了实现电场激发和能量提取,优选的是精确地控制所述谐振转换器的谐振频率和电压。所述频率在这种情况下被固定在稍高于所述谐振回路的谐振频率处,而同时可以通过切换图形调制和反馈调节来实现电压控制。两种调制方法,即相移调制(PSM)和脉冲宽度调制(PWM)均能提供电压控制。通过将所感测到的谐振电压与基准进行比较来实现反馈调节,而同时其误差被用于调制所述谐振转换器中的开关的相位或脉冲宽度。通过这种调制,按照操作模式的自动双向能量流动得以保证。
在FEEC装置的可替换实施例中,谐振导体(resonant conductor)可以实现串联连接的多个铁氧体电感器以优化所述FEEC装置的操作。串联连接的谐振电感器相对于单个谐振电感器而言具有若干优点。
通过将所感测到的谐振电压与基准进行比较来实现反馈调节,而同时其误差被用于调制所述谐振转换器中的多个开关的相位或脉冲宽度。
在另一示例性实施例中,谐振转换器的反馈控制环路可以被利用以便于自动双向功率流。所述反馈控制环路由谐振电压感测电路、误差补偿器以及PWM或PSM脉冲发生器组成。
经过考察下述附图和详细说明之后,本发明的其他系统、方法、特征以及优点对于本领域的技术人员而言将显而易见或将变得明显。目的在于所有这样的附加的系统、方法、特征以及优点都涵盖在本说明书之内、处于本发明的范围内并且通过所附权利要求而受到保护。如在上文中所提及的,目的还在于本发明不限于示例性实施例的细节。
附图说明
通过研究附图可部分地探明包括制造、结构以及操作在内的本发明的细节,在所述附图中相同的参考标号指代相同的部分。图中的组件不一定按比例绘制,而是着重于示出本发明的原理。此外,所有示意旨在传达概念,其中相对的尺寸、形状以及其他具体特征可示意性地而非照字面或精确地示出。
图1是聚变能量提取电路(FEEC)的示意图。
图2是具有等效的镜像电流源的谐振转换器电路的示意图。
图3是示出并联谐振回路的波特图的曲线图。
图4是示出脉冲宽度调制方法示意的曲线图。
图5是示出脉冲宽度调制发生机制的曲线图。
图6是提供相移调制示意的曲线图。
图7是相移调制发生电路的示意图。
图8是聚变能量提取电路的反馈环路的示意图。
图9是谐振电压感测电路的示意图。
图10是描绘响应于所注入的粒子的功率流的动态波形的仿真结果的曲线图。
图11是描绘电容器(模拟所述四重挡板)处的谐振电压的实验结果的曲线图。
具体实施方式
本文所描述的系统和方法针对直接聚变能量提取。
图1是描绘聚变能量提取电路(FEEC)装置100的优选实施例的框图。FEEC装置100由并网双向转换器组件110和谐振转换器120组成。在图1中的FEEC装置100的优选实施例中,双向转换器组件110实现三相并网转换器112。然而,应理解的是双向转换器组件110可以为了不同的目的而实现不同因数的相位的并网转换器。例如,可以为了更低功率的应用而实现单相并网转换器(未示出)。
在FEEC装置100的优选实施例中,谐振转换器120包括逆回旋加速转换器(ICC)122和多个开关S1-S4。在'106专利(以引用的方式将其并入本文)中更加详细地描述了ICC 122,其优选地被构造为具有多个挡板124,所述多个挡板在这个实例中以四极构造被示出。ICC 122的四极挡板124被用作电容器,并且与电感器L共同形成谐振回路130,将在下文中对此进行更加详细的描述。挡板124优选地是伸长的,这些挡板的弓形横截面形成伸长的环形圆筒腔室,并且在所述挡板之间形成轴向延伸的伸长间隙。当向所述挡板施加电流时,跨挡板之间的间隙形成多极电场。
在装置启动期间,能量从公用电网114经由并网双向转换器组件110流向谐振转换器120,从而建立谐振并且激发谐振转换器120的四极电场。在发电/能量提取期间,来自举例来说诸如聚变过程的带电粒子束穿过ICC 122并且被跨ICC 122的挡板124之间的间隙所形成的四极电场减速。同样在发电/提取期间,四极挡板122将以镜像电流is的形式收集损失的能量。然后,镜像电流is将经由谐振转换器120和并网双向转换器组件110流向电网114。并网转换器110在启动时间期间起交流/直流整流器的作用,而在发电时间期间起直流/交流并网逆变器的作用。在这两种情况下,并网转换器110将根据需要以整功率因数、超前功率因数或滞后功率因数操作,从而提供有功功率和无功功率(VAR)。
为了使谐振转换器120实现电场激发和能量提取,优选的是精确地控制谐振频率和电压。频率在这种情况下被固定在稍高于谐振回路130的谐振频率处以确保零电压软切换,而同时可以通过切换图形调制和反馈调节来实现电压控制。下面检验两种调制方法,即相移调制(PSM)和脉冲宽度调制(PWM)。这两种调制方法均能完成电压控制的任务;然而,PSM方法为动态策略(maneuver)产生更宽的操作范围。通过将所感测到的谐振电压与基准进行比较来实现反馈调节,而同时其误差被用于调制谐振转换器120中的开关S1-S4的相位或脉冲宽度。通过这种调制,按照操作模式的自动双向能量流动得以保证。
图2是描绘谐振转换器120的示例性实施例的示意图,其中直流电压vdc由并网双向转换器110提供(在图1中也示出了vdc)。这里,谐振转换器120包括多个开关S1、S2、S3以及S4。开关S1、S2、S3以及S4形成电桥,该电桥以切换频率fs将直流电压vdc斩波成跨AB的脉冲波形vAB,所述切换频率fs远高于电网114的频率。电容器C代表ICC 122的四极挡板124。如在上文中所指出的,电容器C和电感器L形成谐振回路130。仅vAB的基频将通过谐振回路130,在该谐振回路130中其获得增益H(s),并且将跨四极挡板122呈现为正弦波形vs。电流源is代表当带电粒子被减速时经校正的镜像电流,而电阻Rc代表来自带电粒子的热量和辐射损失。
谐振回路的增益H(s)为:
(1)。
因此,幅值(电压增益)为:
(2)。
最大振幅频率为ωm,在此频率处输出电压具有最大值:
(3)。
对于FEEC装置100,RC通常非常大,由此:
(4)。
图3示出了并联谐振回路130的波特图。最大增益大约出现在谐振频率ωr处。谐振电路的另一重要参数为品质因数Q:
(5)。
其中R0为谐振回路130的特性阻抗:
(6)。
因此:
(7)。
根据方程(7),应注意到的是越大的RC产生越高的Q值以及电压增益上偏离谐振的更陡的变化坡度。
如在上文中所提及的,可以通过切换图形调制和反馈调节来实现谐振转换器120的输出电压控制。相移调制(PSM)和脉冲宽度调制(PWM)两者均能完成电压控制的任务。
脉冲宽度调制(PWM):通过PWM来调节两臂(leg)中的开关S1、S2、S3以及S4的脉冲宽度。所得到的电压差为阶梯形状,其基频成分可通过脉冲宽度来调节。
图4示出了图2所示的所有开关S1、S2、S3以及S4的触发脉冲波形。开关S1和S2的接通时间在0-50%之间调节。开关S4和S3分别与开关S1和S2互补。图4还示出了图2所示的电路实施例的结点A(VA)和B(VB)处的电压脉冲波形。
电桥电压VAB(如图4所示)的基频表达如下:
。
可以通过简单且常用的电路来实现对于所有开关恰当的触发信号。
如图5所描绘的,将相移等于Ts/2的两个锯齿波151和152与同一控制信号VC进行比较。占空比D等于VC大于所述锯齿的幅值的时间部分。所得到的两个脉冲分别被用于触发MOSFET开关S1和S2。如在上文中所提及的,分别通过开关S1和S2的互补信号来驱动开关S4和S3。应注意的是占空比D仅可在0-50%之间变化。在优选的实施例中,谐振转换器120被构造为具有MOSFET开关S1-S4。应理解的是谐振转换器120可以被构造为具有能实现相同结果的各种电路开关。
相移调制(PSM):在PSM方法中,通过调节两臂的开关的触发脉冲之间的相位差来调节谐振转换器120的输出电压。图6示出了开关网络的典型的PSM波形,其中α是臂A与B之间的相移。注意,各开关的脉冲宽度不变。电桥电压vAB的脉冲宽度随着α的变化而变化。因此,基频成分发生变化并且谐振电压vs被调节。电桥电压vAB的基频是α的函数:
显然,相移α可以控制vAB的振幅。
图7示出了能够在vA与vB之间实现可调相移的电路的一个示例性实施例。应理解的是许多其他电路实施例可以实现相同的目标。例如,各种数字电路可以被用于实现可调相移的目的。如图7所示,锯齿波170被用作载波以与两个直流电压—控制信号vC和固定直流信号vfix进行比较。当将锯齿波170与控制信号vC进行比较时,该比较产生相移值。当将锯齿波170与固定直流信号vfix进行比较时,该比较产生用于控制电路中的所有数字成分的时钟信号。该锯齿波的频率是切换频率的两倍,所述切换频率在通过D触发器之后被除以2。
谐振电感器实现:在FEEC装置100的可替换实施例中,谐振导体120可实现串联连接的多个铁氧体电感器以优化FEEC装置100的操作。串联连接的谐振电感器相对于单个谐振电感器而言具有若干优点。第一,由于可以通过磁芯损耗低且磁通摆幅小的小尺寸、高频的铁氧体磁芯来实现每个串联连接的电感器,因此可以降低功率损失。第二,有可能以单层结构制成每个谐振电感器,从而消除对层与层之间的高电压隔离度的需要。此外,也消除了层与层之间的寄生电容以及耦合电感。这些寄生电容和耦合电感会对FEEC装置100的谐振电路120有严重的影响。第三,单层结构可以为谐振电感器提供有效的冷却方案而不会使内层过热。最后,可以利用市场上可买到的用于高频功率应用的小尺寸铁氧体磁芯来实现串联连接的谐振电感器。
反馈控制环路:如在上文中所提及的,可以通过切换图形调制和反馈调节来实现谐振转换器120的输出电压控制。以上详细描述了这两种调制方法。通过将所感测到的谐振电压与基准进行比较来实现反馈调节,而同时其误差被用于调制谐振转换器120中的开关S1-S4的相位或脉冲宽度。
图8示出了谐振转换器120的反馈控制环路180的示例性实施例。谐振转换器120的反馈控制环路180由于其便于自动双向功率流,因而是FEEC装置100的关键元件。反馈控制环路180由谐振电压感测电路182、误差补偿器184以及PWM或PSM脉冲发生器186组成。在启动模式期间,谐振电压vs初始为零。谐振电压vs的这个零值导致大的误差以及来自补偿器184的高输出,而然后PWM或PSM脉冲发生器186将分别产生高的占空比或小的相移以增大谐振电压vs。
在发电或提取模式期间,带电粒子束将穿过ICC 122,并且在它们旋转通过跨四极挡板124之间的间隙所形成的四极电场时被减速。反馈环路180将迫使在四极挡板124处所收集到的损失的能量流入谐振转换器120中。相似地,并网双向转换器110的反馈环路180将迫使在直流总线181处所收集到的能量流回电网。
图9示出了谐振电压感测电路182的示例性实施例。谐振电压感测电流的输入v0与谐振输出端vs耦合,该谐振输出端的谐振电压对光电二极管电流进行调制。谐振电压感测电流的输出(“v0反馈”)与PWM或PSM控制器的具有高电压光隔离度的误差补偿器耦合。因此,谐振电压的变化可以在光学上被转换为控制环路180的反馈信号。
这种方法的好处包括成本低、电压隔离度高以及实现简单。具体而言,具有高电压(HV)分压器电阻的交流输入光电耦合器由于HV分压器电阻具有非常高的阻抗而对谐振操作施加很小的影响。
仿真和实验:图10示出了各种粒子强度的仿真结果。使用图1所示的FEEC转换器装置100,通过图10所示的仿真结果来证明直接的聚变能量提取。与由镜像电流源Is模拟的粒子束注入强度相对应地示出启动时间和发电时间期间的平均直流链路电流IDC。在图10中,在300μs处将带电粒子注入ICC 122。当带电粒子被ICC 122减速时,聚变能量大致与镜像电流成比例。在这个仿真中,通过1 MΩ的电阻RC来模拟热量和辐射损失。在启动时间期间,平均直流链路电流IDC值为117.5 mA,其代表电路损失。在注入镜像电流之后,IDC值由于聚变能量输入而下降。例如,当将3 mA镜像电流注入谐振转换器120时(这是5W注入的情况),直流链路电流IDC值降至87.5 mA。根据图10,所预期的是当聚变能量处在15W与20W之间时,平均直流链路电流IDC达到零(抵平),而然后降至负值(发电)。
所呈现的FEEC装置100能够向ICC 122的四极挡板124提供能量以开始减速过程。当镜像电流在四极挡板124处被收集时,能量将经由双向并网转换器110被送回电网。
图11示出了跨谐振电容器C(其在图2中被示出)所测量到的实验波形。在这个实验中,谐振电感器L的值约为370 μH,并且四极挡板的模拟电容器值C为70 pF。热量和辐射损失的估计电阻RC为2 MΩ,而镜像电流的频率为1 MHz,这与谐振转换器的切换频率相同。通过闭环控制180,谐振转换器的126 V的直流链路电压VDC在图11所示的启动时间期间可以生成3 kV、1 MHz的谐振电压。
为了示例的目的而仅就直接的聚变能量提取而言描述了本文所提供的系统和方法。然而,本领域技术人员将容易理解的是,本文所提供的用于提取带电粒子的动能的系统和方法可在大电流离子加速器中被用于能量回收。如本领域的普通技术人员所公知的,来自大电流离子加速器的大功率离子束被用在科学和工程上的各种商业和学术研究设定(setting)中。所有这些应用的能量消耗巨大。现今,大多数能量被简单地浪费。本文所描述的能量提取过程提供了回收这样的能量并且降低这样的安装的能量损耗的手段。为了实现这点,可简单地将提取设计添加在束线经过目标区域的端部。
本领域的技术人员还将容易理解的是,本文所提供的系统和方法可与其他用于回收和提取能量的系统组合使用。发明名称为“等离子发电系统(Plasma Electric Generation System)”的PCT申请No. PCT/US2006/008251(以引用的方式将其并入本文)涉及被用于提供直接空间等离子推进的能量发生器系统。本领域的技术人员将容易意识到,本文所描述的能量提取过程在不期望推进时可便于从聚变能量流中回收和提取能量。
本领域的技术人员还将容易理解的是,用于提取带电粒子的动能的过程可在中性束加速器中被用于提高效率。来自正和/或负离子源的大功率中性原子束在不同的商业和学术设定中被用于诊断或被用作高能原子源。在所有这些应用中,束源的特征在于由于相当小的电荷交换横截面而引起的效率限制。为了实现纯的中性原子束,经过中和室的所有残余离子被偏转并且被丢弃。这种浪费的能量通常是阻力塞功率(plug power)的一半。本文所描述的类型的提取系统可有助于回收这些“被滤去的”离子的大部分能量。
在前述说明中,已参考本发明的具体实施例对其进行了描述。然而,将显而易见的是可以对本发明进行各种修正和变化而不背离本发明的更广义的精神和范围。例如,读者应理解:除非另作说明,否则本文所描述的过程流程图所示的过程动作的特定排序和组合仅是示意性的,并且可以利用不同的或附加的过程动作、或过程动作的不同组合或排序来执行本发明。作为另一例子,一个实施例的每个特征可以与其他实施例所示的其他特征混合及匹配。为本领域的普通技术人员所知的特征和过程可相似地按期望被并入。另外并且显而易见的是,可按期望添加或删减特征。因此,本发明除了根据所附权利要求及其等同内容之外不受局限。
用于从带电粒子束中直接提取能量的电路专利购买费用说明
Q:办理专利转让的流程及所需资料
A:专利权人变更需要办理著录项目变更手续,有代理机构的,变更手续应当由代理机构办理。
1:专利变更应当使用专利局统一制作的“著录项目变更申报书”提出。
2:按规定缴纳著录项目变更手续费。
3:同时提交相关证明文件原件。
4:专利权转移的,变更后的专利权人委托新专利代理机构的,应当提交变更后的全体专利申请人签字或者盖章的委托书。
Q:专利著录项目变更费用如何缴交
A:(1)直接到国家知识产权局受理大厅收费窗口缴纳,(2)通过代办处缴纳,(3)通过邮局或者银行汇款,更多缴纳方式
Q:专利转让变更,多久能出结果
A:著录项目变更请求书递交后,一般1-2个月左右就会收到通知,国家知识产权局会下达《转让手续合格通知书》。
动态评分
0.0