专利转让平台_买专利_卖专利_中国高校专利技术交易-买卖发明专利上知查网

全部分类
全部分类
工艺、结构以及超电容器

工艺、结构以及超电容器

IPC分类号 : C01B32/184,H01G11/32,H01G11/26,H01G11/34,H01G11/36,H01G11/86,C23C16/00,C23C16/26,C23C16/32,B32B23/00

申请号
CN201680023499.5
可选规格
  • 专利类型: 发明专利
  • 法律状态: 有权
  • 申请日: 2016-03-04
  • 公开号: 107848804B
  • 公开日: 2018-03-27
  • 主分类号: C01B32/184
  • 专利权人: 悉尼科技大学

专利摘要

用于形成高表面积石墨烯结构的工艺,该工艺包括:将至少一种金属沉积在碳化硅的表面上;加热至少一种金属和碳化硅,以引起金属中的至少一种与碳化硅的一部分反应,以形成硅化物区和石墨烯,所述硅化物区延伸到碳化硅的未反应的部分中,所述石墨烯被设置在硅化物区和碳化硅的未反应的部分之间;以及除去硅化物区,以提供具有高度不规则的表面和石墨烯的表面层的碳化硅结构。

权利要求

1.一种用于形成高表面积石墨烯结构的工艺,所述工艺包括:

将一种或更多种金属沉积在碳化硅的表面上,其中所述一种或更多种金属包括镍;

加热所述一种或更多种金属和所述碳化硅,以引起所述一种或更多种金属中的至少一种金属与所述碳化硅的一部分反应,以形成硅化物区和石墨烯,所述硅化物区延伸到所述碳化硅的未反应的部分中,所述石墨烯被设置在所述硅化物区和所述碳化硅的所述未反应的部分之间;以及

除去所述硅化物区,以提供具有高度不规则的表面和石墨烯的表面层的碳化硅结构。

2.如权利要求1所述的工艺,其中所述碳化硅初始呈由基底支撑的碳化硅的薄膜的形式。

3.如权利要求1所述的工艺,其中所述一种或更多种金属是一种金属。

4.如权利要求2所述的工艺,包括使碳化硅的所述薄膜图案化,以形成互相隔开的电极。

5.如权利要求4所述的工艺,其中所述电极呈叉指电极的形式。

6.如权利要求4所述的工艺,包括将电解质引入到在所述互相隔开的电极之间的区域,以形成超电容器。

7.如权利要求6所述的工艺,其中所述电解质是凝胶电解质。

8.一种结构,通过权利要求1至7中任一项所述的工艺形成。

9.一种超电容器,包含权利要求8所述的结构。

说明书

技术领域

本发明涉及高表面积结构(high surface area structure)和掺入高表面积结构的超电容器,以及用于制造高表面积石墨烯结构(high surface area graphenestructure)和超电容器的工艺。

背景

期望的是,减少现有技术中的一个或更多个困难,或至少提供有用的备选方案。

概述

根据本发明的某些实施方案,提供了用于形成高表面积石墨烯结构的工艺,该工艺包括:

将一种或更多种金属沉积在碳化硅的表面上;

加热一种或更多种金属和碳化硅,以引起一种或更多种金属中的至少一种与碳化硅的一部分反应,以形成硅化物区(silicide region)和石墨烯,所述碳化硅区延伸到碳化硅的未反应的部分中,所述石墨烯被设置在硅化物区和碳化硅的未反应的部分之间;以及

除去硅化物区,以提供具有高度不规则的表面和石墨烯的表面层的碳化硅结构。

在某些实施方案中,碳化硅初始呈由基底支撑的碳化硅的薄膜的形式。

在某些实施方案中,至少一种金属包括镍。在某些实施方案中,至少一种金属是仅一种金属。

在某些实施方案中,该工艺包括使碳化硅的薄膜图案化,以形成互相隔开的电极。在某些实施方案中,电极呈叉指电极(interdigitated finger electrode)的形式。

在某些实施方案中,该工艺包括将电解质引入到在互相隔开的电极之间的区域,以形成超电容器。

在某些实施方案中,电解质是凝胶电解质。

根据本发明的某些实施方案,提供了由上文工艺中的任一项形成的结构。根据本发明的某些实施方案,提供了超电容器,所述超电容器包含该结构。

根据本发明的某些实施方案,提供了高表面积结构,所述高表面积结构包含碳化硅主体和石墨烯的层,所述碳化硅主体具有高度非平面的表面,所述石墨烯的层被设置在碳化硅主体的表面上。

根据本发明的某些实施方案,提供了超电容器,所述超电容器包括一对或更多对互相隔开的碳化硅电极,每对所述电极具有高度非平面的表面和被设置在碳化硅电极的高度非平面的表面上的石墨烯的层。

本文还描述方法,所述方法包括:

将一种或更多种金属沉积在碳化硅的主体的表面上;

加热一种或更多种金属和碳化硅的主体,以引起金属中的至少一种与主体中的碳化硅反应,以形成硅化物区和石墨烯,所述硅化物区延伸到碳化硅的主体中,所述石墨烯被设置在硅化物区和碳化硅之间;以及

除去硅化物区,以提供具有高度非平面的表面与石墨烯的表面层的碳化硅结构。

在某些实施方案中,碳化硅的主体呈由基底支撑的碳化硅的薄膜的形式。

在某些实施方案中,该方法包括使碳化硅的薄膜图案化,以形成电容器的电极。

在某些实施方案中,电容器的电极呈叉指电极的形式。

在某些实施方案中,该方法包括从石墨烯结构形成超电容器。

在某些实施方案中,一种或更多种金属包括镍。

在某些实施方案中,一种或更多种金属是单金属。

根据本发明的某些实施方案,提供了结构,所述结构包含碳化硅主体和石墨烯的层,所述碳化硅主体具有高度非平面的表面,所述石墨烯的层被设置在碳化硅表面上。

根据本发明的某些实施方案,提供了超电容器,所述超电容器包括碳化硅电极,所述碳化硅电极具有高度非平面的表面和被设置在碳化硅表面上的石墨烯的层。

附图简述

在下文中参考附图,通过仅实例的方式,描述本发明的某些实施方案,在附图中:

图1是用于形成根据本发明的某些实施方案的结构的工艺的流程图;

图2至图4是在图1的工艺的不同步骤处的片样品(wafer sample)的示意性横截面侧视图,图示在高度波纹状的且多孔的SiC表面上形成石墨烯;

图5是用于形成根据本发明的某些实施方案的超电容器结构的工艺的流程图;

图6包括在图5的工艺的各个步骤处在Si样品上的SiC的示意图;

图7是示出样品F1、样品F2、样品R1和样品R2的拉曼光谱的图(详见文本);

图8包括(a)F1样品、(b)F2样品、(c)R1样品和(d)R2样品的四个高分辨率XPS C1光谱,示出通过曲线拟合确定的成分石墨烯和SiC峰;

图9包括(a)在Si上的未处理的SiC膜的参考样品,和(b)石墨烯样品F1、(c)石墨烯样品F2、(d)石墨烯样品R1、(e)石墨烯样品R2的五个SEM图像,示出在石墨烯形成之后的大量凹坑(pitting);

图10是示出在镍辅助石墨化(nickel-assisted graphitisation)(样品F2)之后的顶部SiC表面的横截面TEM图像,白色虚线指示在样品制备期间添加的保护性Pt盖(protective Pt cap)下面的凹坑中的SiC表面轮廓(SiC surface profile);

图11包括(a)样品F1、(c)样品F2、(e)样品R1和(g)样品R2的四个平面图AFM图像,连同它们对应的(b)F1、(d)F2、(f)R1和(h)R2的表面线扫描轮廓(surface line scanprofile);

图12包括在3M KCl中以10mV s-1-100mV s-1的扫描速率的(a)F1样品、(b)F2样品、(c)R1样品、(d)R2样品和(e)参考SiC/Si样品的五个CV曲线,以及(f)每个样品的作为扫描速率的函数的电容的图;

图13包括在3M KCl中以1μAcm-2-5μAcm-2的电流面积密度(current arealdensity)的(a)F1样品、(b)F2样品、(c)R1样品、(d)R2样品和(e)参考SiC/Si样品的五个恒电流充电-放电曲线;

图14是石墨烯样品F1、石墨烯样品F2、石墨烯样品R1、石墨烯样品R2和参考SiC/Si样品的奈奎斯特图,还示出高频率区中的奈奎斯特图的等效电路和放大的视图;

图15和图16是示出在除去表面石墨烯层之前和之后来自处理的样品的拉曼光谱的图;

图17是示出来自由三种类型的样品形成的电池的循环伏安(CV)曲线的图(详见文本);

图18是示出来自相同的三个电池的恒电流充电和放电曲线的图;以及

图19是图示以10μAcm-2的电流密度的电池的长期循环测试(long-term cyclingtest)的图。

详述

所描述的本发明的实施方案包括用于形成石墨烯结构的工艺,以及用于形成掺入那些石墨烯结构的超电容器的工艺。由所描述的工艺形成的石墨烯结构其特征是,具有提供相对高表面积每单位体积或覆盖区(footprint)的高度非平面或“粗糙”的表面,这使得它们有利于用于需要高表面积结构的许多应用,包括例如许多类型的传感器和电容器。

特别地,所描述的工艺包括用于形成本领域称为“超电容器”的具有非常高的电容的电化学电容器或电容器结构的工艺。超电容器可以与电池一起使用或代替电池,并且超电容器可以比电池充电和放电快很多(例如,超电容器可以在仅几秒内完全充电)。超电容器还比可再充电电池较少受充电和放电影响,并且因此对于需要多个充电-放电循环的应用是优选的。

超电容器能够比锂-离子电池的功率密度大一个数量级(10,000W kg-1),并且比电解质电容器的能量密度高两个数量级(10Wh kg-1)。它们还不遭受锂离子可再充电电池的相对慢的功率输出和有限的寿命周期。

本文描述的石墨烯结构不仅具有大的表面积,而且具有低的薄层电阻(sheetresistance)和高的导电性。此外,石墨烯结构在碳化硅(SiC)表面上形成,SiC是适合于在严酷和极端环境中使用的极其耐用的耐火材料。所描述的工艺还可以集成到现有半导体制造工艺中,这允许石墨烯结构和超电容器与其他结构和装置在包括集成电路的单个模具上组合,以便提供集成的或“片上(on-chip)”能量储存,例如这为诸如传感器和能量采集器的许多集成微系统(integrated microsystem)提供了有利的微型化前景。

如在图1的流程图中示出的,用于产生石墨烯结构的工艺100以在步骤102处将一种或更多种金属沉积到碳化硅(SiC)的主体上开始。可以使用对本领域技术人员已知的任何标准金属沉积工艺,包括例如溅射和热蒸发,来沉积金属。SiC的主体可以呈块状样品(bulk sample)或片的形式,或可选择地,可以是被附接至支撑基底的薄膜或层。SiC的薄膜或层可以是结晶的或无定形的。基底可以是单晶基底。在所描述的实施方案中,SiC的主体是单晶SiC的薄膜202,并且支撑基底是呈标准单晶硅片的形式的硅(Si)基底204,但在其他实施方案中不需要是这种情况。一种或更多种金属以薄层或薄膜206的形式被沉积。

在步骤104处,加热金属和SiC主体以引起金属与SiC反应,以形成一个或更多个硅化物区和被设置在硅化物区和未反应的SiC之间的界面处的石墨烯层。此发生的一般现象在题为Process for Forming Graphene Layers on Silicon Carbide的国际专利申请第PCT/AU2014/050218号中描述,该国际专利申请的全部内容据此通过引用明确地并入本文。例如,金属例如镍(Ni)、钴(Co)、钛(Ti)、钨(W)和铁(Fe)可以如上文描述的被沉积并且与SiC反应,以通常在至少1000℃的温度形成稳定的硅化物。

然而,本发明人已经确定,硅化物区的形态高度依赖于被沉积的特定的金属。特别地,某些金属或金属的组合(例如,镍(Ni)和铜(Cu)的混合物)形成相对均匀且平滑的层,而其他金属导致形成具有高度不规则的且复杂的形态的硅化物区。根据本发明,选择至少一种金属,使得当如上文描述反应时,该至少一种金属形成空间上不规则的或不均匀的硅化物区302,所述硅化物区302间歇地穿透或突出到SiC层或主体中,如在图3中示出的并且如在下文中更详细地描述的。对于感兴趣的任何给定的金属,良好地在本领域那些普通技术人员的能力内的是,将金属简单地沉积在SiC基底上,应用如上文描述的热处理以及使用包括本文描述的那些对本领域技术人员已知的任何合适的标准评估方法(例如,电子显微术)评估产生的表面形貌(surface topography)。

本发明人已经确定,为了此目的,金属镍(Ni)是特别合适的选择,尽管其他金属可以在某些实施方案中使用。镍是在SiC中快速扩散的元素,并且被发现在解离Si-C键并且形成形态学上不均匀的硅化镍区和石墨碳(graphitic carbon)方面是有效的。(从SiC)释放的碳的至少某些在SiC/Ni界面处石墨化,即沉积为石墨烯。总反应可以被简化为如下:

yNi+xSiC→NiySix+xC(石墨烯)(1)

(其中x,y=1-2)

这些硅化物突起(silicide protrusion)已经形成,其连同任何剩余的金属在步骤106处被除去(例如,通过蚀刻工艺)。由于硅化物区的高度不均匀的形态,剩余的未反应的SiC的表面具有对应的粗糙的且不均匀的形态,如在图4中示出的,并且甚至可以被描述为多孔的和/或具有高度非平面的、复杂的或粗糙的表面。然而,由于在步骤104处在SiC和硅化物区之间的界面处形成石墨烯,此步骤的结果是具有粗糙的或多孔的表面的涂覆有连续的石墨烯的层404的SiC的主体402,并且因此在平面图中相对大的表面积每单位体积或足迹。因此,沉积的金属可以被认为通过形成随后除去的形态上不均匀的硅化物(在退火工艺期间),诱导SiC主体的表面的粗糙度和孔隙率。

为了完整性,如果SiC完全反应,那么石墨烯层仍然可以保留,但是比当仍然存在某些剩余的SiC时具有更差的品质。

如上文描述的,产生的结构可以被用于许多应用,并且特别良好地适合于需要大表面积的应用,例如包括传感器和电容器。取决于任何给定的应用的特定的要求,通过简单地重复步骤102至步骤106任何数目的次数,直到孔隙率或表面粗糙度对于期望的应用是足够的(如在步骤108处评估的),可以调节、定制(tailor)或以另外方式根据需要确定孔隙度(degree of porosity)或表面粗糙度。

如下文描述的,此石墨烯层相对于其足迹具有高的导电性和大的表面积,这使得其特别适合于用作电容器的互相隔开的电极或‘极板’(尽管它们是非平面的)。

图5是用于产生超电容器的工艺500的流程图。通过在Si片或基底604上形成SiC的层602,该工艺在步骤502处开始,如在图6中示出的。在步骤504处,SiC层602被图案化(例如,使用对于本领域技术人员已知的标准平版印刷术和除去工艺(subtractiveprocess)),以便除去SiC层602的选定的区域,使得剩余的SiC在Si基底604上呈SiC的互相隔开的区域或凸起(island)606的形式。如下文另外描述的,这些SiC区或凸起606构成电容器结构的阵列,其中每个电容器结构包括至少一对互相隔开的电容器电极或‘极板’。

在步骤506处,使用上文描述的工艺100处理这些SiC凸起606,以便使每个SiC凸起606的至少一部分与至少一种金属反应,以形成空间不均匀的硅化物区,并且除去这些硅化物区和任何剩余的金属,使得剩余的SiC结构的表面608是多孔的、高度纹理的或粗糙的,并且具有石墨烯的表面涂层,如上文描述的和在图4中示出的。

在步骤508处,在每个电容器结构602的选定的部分上形成导电电极610,以便提供每个电容器的互相隔开的电极或‘极板’。在步骤510处,含水电解质或凝胶电解质(例如,在PVA凝胶中的H2SO4)被添加至在电容器极板之间的区域,使得该结构可以起作为电化学电容器或‘超电容器’的作用。如在图6中示出的,在所描述的实施方案中,每个电容器结构的电容器‘极板’呈叉指电极614的一般形式,通常在本领域中使用以提供大的表面积的一般结构。然而,根据本发明,每个指状电极(finger electrode)614包括具有涂覆有导电石墨烯的高度纹理的或粗糙的表面(并且从而具有高的表面积)的SiC。

实施例I

为了展示在使用本文描述的工艺形成的SiC结构上的多孔石墨烯的性质,将(~300nm厚)3C-SiC层经由与可选择地供应到水平热壁、低压化学气相沉积(LPCVD)炉中的SiH4(99.9994%)和C3H6(99.9999%)在1000℃煅烧,在Si片上生长(100)。发现产生的结晶3C-SiC层具有1016cm-3-1017cm-3n型载体的非故意掺杂浓度(unintentional dopingconcentration)。

然后,通过在8×10-2毫巴的基准压力(base pressure)使用100mA的沉积电流的DCAr+离子溅射,将产生的SiC/Si片涂覆有薄的(~2nm)镍膜。然后,将片在1000℃-1200℃的流动的(20sccm)N2气氛中退火,一些片通过常规的炉退火(furnace annealing)持续2小时的时间段(表示为“FA”,温度以~25℃min-1斜升),而其他片通过快速热退火持续仅四分钟(表示为“RTA”,温度以~5℃s-1斜升)。为了方便参考,将用不同退火条件的样品表示为F1(1000℃,经由FA)、F2(1200℃,经由FA)、R1(1000℃,经由RTA)以及R2(1100℃,经由RTA)。

然后,使用Freckle溶液(70:10:5:5:10-85%H3PO4:冰乙酸:70%HNO3:50%HBF4:H2O)蚀刻退火的片,以除去产生的硅化镍和任何未反应的镍,使用极其小心以保留石墨烯层。

所有样品通过在Renishaw光谱计上的拉曼光谱来表征,其中对每个样品的四个位点用在514nm的激光激发。拉曼光谱是强有力的且非破坏性技术,以通过比较D拉曼带和G拉曼带评估石墨结构。

图7示出四种类型的样品的拉曼光谱,每个样品具有四个主要的峰。在~790cm-1和965cm-1处的峰是来自模板/基底SiC/Si片的典型的SiC峰。富含D的带和富含G的带分别位于~1350cm-1和~1580cm-1。G带揭示以E2g模式的声子振动,而D带对应于sp2碳网络的缺陷(defect)和无序性质。因此,D峰和G峰的强度比(ID/IG)是sp2结构和相关的缺陷的降低程度的测量值。因此,较高的ID/IG值指示更多有缺陷的结晶结构。

例如,通过卤化处理的SiC衍生的碳粉末具有小的孔径与高的ID/IG值,这指示丰富的有缺陷的位点。相比之下,在如上文描述制备的样品中的石墨化的碳(石墨烯)其特征是,相对低的ID/IG值(0.7-1.2,见以下表1),这表明如上文描述产生的石墨烯具有相对高的品质与相对少的缺陷。从表中的值明显的是,退火程序对缺陷的量和最终的石墨烯层厚度有显著差异。

表1样品F1、样品F2、样品R1、R2和参考SiC/Si样品的薄层电阻、拉曼ID/IG比、RMS粗糙度、石墨烯层的数目、面积电容(area capacitance)和重量电容(gravimetriccapacitance)。

*以5mV s-1的扫描速率获得的电容

#代表在4个位点每样品上的测量值的变化的不确定值

样品的表面区的化学组成通过在超高真空(UHV)系统中的X射线光电子光谱(XPS)使用以300W的功率以至样品表面的65°的入射角操作的非单色Mg Kα(1253.6eV)X-射线源(DAR 400,Omicron Nanotechnology),使用125mm半球形电子能量分析仪(Sphera II,7通道检测器,OmicronNanotechnology)来确定。产生的光电子以90°的出射角(take-offangle)被收集。测量扫描(survey scan)以50eV的分析仪通过能(analyser pass energy)进行,而高分辨率扫描分析仪以20eV的分析仪通过能进行。测量扫描以0.5eV的梯级(step)和0.2s的停留时间进行,而高分辨率扫描以0.2eV梯级和0.2s驻留时间运行。在XPS扫描期间,分析室中的压力被保持低于4.0×10-10毫巴。

所有样品的C1峰的高分辨率XPS光谱在图8中示出,其中C1峰已被解卷积(de-convolute)成两个拟合峰。富含石墨烯层可以在~285eV被鉴定为石墨碳,而位于~283eV的碳化Si-C键归因于在下面的SiC。

为了定量地确定在SiC/Si片上的产生的石墨烯层的数目(t),在高分辨率XPS光谱中对应于石墨烯(NG)和SiC(NR,作为参考)的光电子峰的强度比计算如下,考虑到石墨烯的 的层间距:

其中T代表分析仪的传输函数;E代表光电子动能;ρ代表材料的原子密度;C代表微分横截面;以及λ代表来自TPP-2M式的非弹性平均自由程。考虑到光电子衍射,几何校正因子F也被包括在等式中。上标’指示对应于石墨烯覆盖层对照于SiC块的量。通过从等式求解t,对于F1、F2、R1和R2,每个样品的石墨烯层的数目分别被计算为8.3、13.7、14.1和24.8,如在表1中示出的。

为了研究表面形态,使用JSM-6610LV设备,通过扫描电子显微术(SEM)来检查样品。图9包括五个平面图SEM图像,示出作为高密度的矩形小丘的未处理的SiC的初始表面(图9(a)),这些是在表面(100)上具有双重对称的堆垛层错的典型的信号。所有石墨烯样品的表面(图9(b)、图9(c)、图9(d)、图9(e))呈现更粗糙,具有稠密的凹坑图案。此不平的形态(rugged morphology)是在退火期间镍扩散到SiC层中并且形成随后蚀刻掉的局部硅化物区的结果,如在图2至图4中示意地示出的。产生的石墨烯层通常共形地遵循粗糙的或不平的表面。

透射电子显微术(TEM)用于产生样品的横截面图像。使用聚焦离子束(FIB)提出技术(Focused Ion Beam lift-out technique)来制备TEM样品。在离子碾磨(ion milling)之前,样品用5keV电子束沉积的Pt盖保护以保持初始表面完整性。然后,样品通过用Ga离子束以30keV FIB碾磨成~1μm的厚度来制备,并且然后使用以500eV的Ar离子束抛光,以除去Ga离子损伤并且获得用于高分辨率成像的电子透明度。然后,将样品插入到在80keV操作的FEI Titan Cs校正的TEM中。

图10是F2样品的横截面TEM图像,示出在石墨化之后剩余的SiC的表面形态。沉积在样品的顶部以保持表面在FIB下的铂加盖的层已经填充SiC表面中的凹坑,如通过图8中的白色虚线指示的,因此图8中的白色虚线代表实际SiC表面轮廓。

另外,离表面更远,发现具有在~30-50nm的纳米范围内的尺寸的若干暗区(darkarea),这示出孔的某些在SiC膜中更深形成。

使用NT-MDT Integra光谱系统来通过原子力显微术(AFM)测量样品上的表面纹理。超过20μm×20μm的扫描面积的石墨烯样品F1、石墨烯样品F2、石墨烯样品R1和石墨烯样品R2的AFM图像和线扫描轮廓(line scan profile)在图11中示出。图11(a)、图11(c)、图11(e)和图11(g)的平面图AFM图像指示所有样品的显著的粗糙度,而表面形态通过图11(b)、图11(d)、图11(f)和图11(h)的线扫描轮廓被进一步揭示。如在上文表1中指示的,F1具有~23nm的最小RMS粗糙度,而F2、R1和R2分别具有~41、nm~66nm和~70nm的相对较大的值。原始裸露的SiC的初始粗糙度RMS是~3.8nm。

使用超过1×2cm2的面积的宏观的Van der Pauw结构测量在SiC/Si和参考SiC/Si片上的石墨烯的薄层电阻。薄片电阻典型地代表具有均匀厚度的薄膜的电阻的测量值,并且可用于评估薄膜的导电。

电化学分析

将所有样品(1×2cm2)干燥并且在三电极电池配置中用作具有Ag/AgCl参考电极和铂对电极的工作电极。电化学测试在3M KCl含水电解质中进行。循环伏安(CV)测试以0V至0.8V(相对于Ag/AgCl)的电压范围在普林斯顿应用研究VersaSTAT 4恒电位仪单元上进行。扫描速率在从5mVs-1、10mVs-1、20mVs-1、50mVs-1至100mVs-1的范围内。电化学阻抗光谱(EIS)在超过100kHz至100Mhz的频率范围的相同的仪器上进行,10mV交流电振幅。使用辐射计分析Voltalab 40装置以1μAcm-2、2μAcm-2、3μAcm-2和4μAcm-2的电流密度评估恒电流充电和放电性能。

以不同扫描速率的F1样品、F2样品、R1样品、R2样品和参考SiC/Si样品的循环伏安(CV)曲线分别在图12(a)-图12(e)中示出。所有这些数据集都呈现理想的矩形形状,这指示占优势的双层储存机制。每个电极示出在各种扫描速率,类似的CV曲线,这呈现双层行为的高的可逆性。次要氧化还原偶在~0.2V出现,可能是由于蚀刻工艺产生的杂质残余物。所有退火的(即,热处理的)样品沿电压扫描区具有高得多的响应电流密度,这指示相对于参考SiC/Si高得多的电容,参考SiC/Si递送相当有限的电容。退火的SiC/Si样品的增强的电化学行为归功于生长的石墨烯层,所述石墨烯层在其表面上储存离子电荷。F1样品、F2样品、R1样品、R2样品和参考SiC/Si样品的比电容相对于扫描速率在图12(f)中被标绘,其中R1呈现出最好的电容性能。对于以5mV s-1的扫描速率的F1样品、F2样品、R1样品、R2样品和参考SiC/Si样品,最大面积电容(即,每单位面积的电容)分别是31.8μFcm-2、37.5μFcm-2、69.5μFcm-2、34.4μFcm-2和6.2μFcm-2

如下将面积电容(CA,F cm-2)转化成重量电容(CG,F g-1):

其中,ρa是单层石墨烯的原子面积密度(3.8×1015个原子cm-2);NA是阿伏伽德罗常数(6.022×1023mol-1);MC是碳的摩尔质量(12.01g mol-1),以及t是如从等式(2)获得的石墨烯层的数目。以5mV s-1的扫描速率的面积电容和重量电容的值,以及薄层电阻、RMS粗糙度(Rq,nm)和来自每个样品的XPS的石墨烯层的数目在表1中列出。

F1电极、F2电极、R1电极、R2电极和参考SiC/Si电极的恒电流充电-放电(GC)曲线分别在图13(a)至图13(e)中示出。所有GC曲线具有总体上三角形形状,而没有任何明显的IR(欧姆)降低(IR drop),这表明这些电极的优良的电化学性能。每个曲线的充电部分在研究的电势范围内几乎对称于其相同曲线的对应的放电部分,这指示在充电过程和放电过程之间的高的可逆性。R1电极(图13(c))在每个电流密度具有最长的放电时间,并且在所有电极中产生最高的面积电容。

电化学阻抗光谱(EIS)是用于评估超电容器的内电阻的技术。图14是示出在3MKCl电解质溶液中的F1电极、F2电极、R1电极、R2电极和参考SiC/Si电极的奈奎斯特图的图。等效电路模型在图14的插图中示出,其中Rs是电解质电阻(其包括电极电阻、电解质本体电阻(bulk electrolyte resistance)和在电解质/电极界面处的电阻),CD是双层电容,RCT是电荷转移电阻,W是Warburg阻抗,以及CF是法拉第伪电容。

所有奈奎斯特图在低频区呈现几乎垂直的斜率,这指示所有超电容器电池的良好的电容器行为。如在图14的插图中的放大视图中看到的,高频率区的轴的实际部分的截距指示电解质电阻(Rs)。发现所有石墨烯样品具有比参考SiC/Si样品小得多的Rs值,这示出大大改进的电解质本体电阻,与其大大降低的薄层电阻良好的一致。

如电化学阻抗光谱学领域的那些技术人员已知的,阻抗曲线以近似半圆形部分开始,然后变成总体上线性的。在该图上的半圆形区揭示电荷转移电阻(RCT);参考SiC/Si样品具有比其他四个催化石墨烯样品(其以所示出的标度是不可见的)的曲线更大的半圆形部分,这指示大得多的RCT,RCT与低的载体掺杂有关并且导致有限的电容。由于高品质石墨烯在SiC/Si片上形成,所以电池的电荷转移电阻进一步降低,如由更小的半圆形的存在证明的。这些EIS结果进一步证实具有催化的石墨烯片上电极(catalytic graphene-on-chipelectrode)的超电容器电池的改进的导电性,与参考SiC/Si相比,催化的石墨烯片上电极递送增强的电化学性能。

上文表1总结了石墨烯样品和对应的SiC参考样品的测量的物理性质、电学性质、化学性质和电化学性质。这些独立的石墨烯片上的电极无导电性添加剂和粘合剂,并且这些电极的双层电容仅取决于电极上的活性材料(石墨烯)的品质和可接近的表面积。

清楚的是,在所有石墨烯样品中,R1在面积电容(69.5μF cm-2)和重量电容(65.0Fg-1)方面具有最好的电化学性能。这可以归因于R1的低的薄层电阻(80Ω/□),如通过图12中的大大降低的电解质电阻和大的RMS粗糙度(66nm)证明的,这导致更大的表面积以有助于在石墨烯表面上的电荷储存。

样品F2具有与样品R1类似的薄层电阻(80Ω/□)和石墨烯层的数目(13.7相对于14.1),但是其电化学性质比R1差很多,由于样品F2的较小的RMS粗糙度(41nm),这提供较低的可接近的表面积。与R1相比,R2具有类似的ID/IG值(=0.7)和RMS粗糙度(70nm相对于66nm),但产生较小的面积电容和重量电容,这可以归因于R2的较大的薄层电阻(236Ω/□)。类似地,样品F1具有比R1更差的电化学性能,还由于样品F1的较大的薄层电阻(680Ω/□)和较小的RMS粗糙度(23nm)与较小的表面积。

表1中的ID/IG值指示石墨烯样品在缺陷性(defectivity)方面的品质。然而,在F2的情况下,即使具有1.2的较高的ID/IG值,石墨烯的薄层电阻仍然低至80Ω。这指示如在所研究的范围内用拉曼光谱评估的石墨烯缺陷性不与所测量的薄层电阻相关。与R1和F2相比,R2和F1的较大的薄层电阻的可能的原因是不同石墨烯膜的不同程度的连续性或覆盖率(不通过拉曼测量捕获的属性)。

具有~14个石墨烯层的样品R1递送最好的面积电容,而具有~25个层的R2示出最差的重量电容,这揭示较大数目的石墨烯层没有转化成较好的电化学性能。这可能是因为仅几个顶部石墨烯层对于电化学双层电荷储存是完全可接近的,并且因此确定总电容。

所描述的本发明的实施方案包括使用金属辅助的催化工艺在多孔SiC上同时形成多孔SiC和高品质石墨烯的工艺。产生的石墨烯样品由于在下面的SiC的大量的凹坑,具有高的表面积,并且将典型的超级电容行为显示为独立的片上电极,其中多达65.0F g-1(或69.5μF cm-2)的比电容。这些片上电极的电化学性能与合成的石墨烯层的表面积和品质以及覆盖率度紧密相关,如通过所测量的薄层电阻值指示的。

所描述的用于形成石墨烯的工艺是无转移的(transfer-free),并且可以消除用于电化学应用的导电性添加剂和/或粘合剂的使用。通过将这些工艺与图案化组合(例如,以形成叉指结构),所描述的工艺可以用于在低成本基底(例如,硅)上产生微型超电容器(micro-scale supercapacitor),这能够以片水平进行能量储存和用于片上的集成能量储存应用的大量机会。

实施例II

使具有1016cm-3-1017cm-3的非故意n型掺杂的外延3C-SiC层(500nm)在Si片(100)上初始生长。通过使用DC Ar+离子溅射器(100mA的沉积电流和8×10-2毫巴的基准压力),将薄的镍膜(~2nm)溅射到此3C-SiC/Si片上,并且转移到管式炉中。将涂覆的3C-SiC/Si片在真空下以~25℃min-1的温度斜升在1000℃-1200℃退火持续2h。允许石墨化的样品冷却下来至室温,并且浸没在Freckle溶液(70:10:5:5:10-85%H3PO4:冰乙酸:70%HNO3:50%HBF4:H2O)中过夜,以消除硅化镍和未反应的镍。将此全部工艺重复持续三次,以在多孔SiC上产生石墨烯的样品。

所有电化学测量在电化学工作站(Electrochemistry Workstation)(CHI660E)上在3M KCl含水电解质的存在下进行。CV测试在-0.2V至0.8V(相对于SCE)的电压范围内从-10mV s-1-100mV s-1进行。以3μA cm-2-10μA cm-2的电流密度评估恒电流充电-放电(GC)性能。以10μA cm-2的电流密度检查代表性样品的循环稳定性持续10,000个循环。

以10μA cm-2的电流密度的此代表性样品的长期循环测试在图19中示出。样品电极在第一1,000个循环中经历剧烈的容量衰减,并且在整个剩余的9,000个循环中保持优良的循环稳定性。对于10,000个连续的充电-放电循环,获得83.2%的容量保持率。

然后,使某些样品在O2等离子体中经受蚀刻以除去石墨烯表面层。

图15和图16是示出在石墨烯蚀刻步骤之前和之后,来自处理的样品中的一个的拉曼光谱的图,证实石墨烯的初始存在,以及其通过蚀刻随后除去。

使用蚀刻的两个相同的石墨烯,或面对面(face-to-face)布置的参考3C-SiC/Si样品,以及在两个电极的配置中的凝胶电解质的层来制备三个全固态超电容器电池。通过使0.03g的气相法二氧化硅(fumed silica)和1.0g的离子液体、1-丁基-3-甲基咪唑鎓二(三氟甲基磺酰基)酰亚胺(1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide)混合来制备凝胶电解质。在测量前,将全固体电池静置持续2h。

图17是示出来自三个电池的循环伏安(CV)曲线的图。蚀刻的SiC样品的CV数据类似于来自参考SiC样品的,尽管两个样品的非常不同的表面形态(平面的相对于高度纹理的/粗糙的/多孔的)。石墨烯电极以各种扫描速率在2V的整个电位窗中呈现准矩形形状,这验证具有高可逆性的双层行为。参考3C-SiC/Si电极示出具有类似形状的CV曲线,但小得多的响应电流密度,这意味着差的性能。

图18是示出来自相同的三个电池的恒电流充电和放电曲线的图。在典型的充电过程和放电过程中,所有三个电池都示出三角形曲线,没有明显的IR降低。显著地,由蚀刻的样品形成的电池类行为似于由参考样品形成的电池,而由石墨烯样品形成的电池具有显著较慢的充电和放电循环,这指示较高的电容,并且证实实现此改进的结果所需的石墨烯。

表2分别使用未处理的参考SiC样品、处理的样品(高表面积石墨烯电极)以及处理+蚀刻的样品(除去石墨烯,仅高表面积SiC)形成的电池的面积电容。

样品面积电容(F/cm2)参考SiC86F1100-3(多孔石墨烯)139等离子体蚀刻F1100-3(多孔/粗糙SiC)84

对于本领域技术人员,许多修改将是明显的,而不偏离本发明的范围。

工艺、结构以及超电容器专利购买费用说明

专利买卖交易资料

Q:办理专利转让的流程及所需资料

A:专利权人变更需要办理著录项目变更手续,有代理机构的,变更手续应当由代理机构办理。

1:专利变更应当使用专利局统一制作的“著录项目变更申报书”提出。

2:按规定缴纳著录项目变更手续费。

3:同时提交相关证明文件原件。

4:专利权转移的,变更后的专利权人委托新专利代理机构的,应当提交变更后的全体专利申请人签字或者盖章的委托书。

Q:专利著录项目变更费用如何缴交

A:(1)直接到国家知识产权局受理大厅收费窗口缴纳,(2)通过代办处缴纳,(3)通过邮局或者银行汇款,更多缴纳方式

Q:专利转让变更,多久能出结果

A:著录项目变更请求书递交后,一般1-2个月左右就会收到通知,国家知识产权局会下达《转让手续合格通知书》。

动态评分

0.0

没有评分数据
没有评价数据
×

打开微信,点击底部的“发现”

使用“扫一扫”即可将网页分享至朋友圈

×
复制
用户中心
我的足迹
我的收藏

您的购物车还是空的,您可以

  • 微信公众号

    微信公众号
在线留言
返回顶部