专利摘要
本发明公开了一种从钼精矿焙烧淋洗液中协同回收钼铼的方法,属于金属铼和钼综合回收利用技术领域。其步骤为:将钼冶炼废酸与预处理剂混合搅拌后进行固液分离;滤液进入装有弱碱性阴离子交换树脂A的交换柱吸附铼,吸附后液进入装填有弱碱性阴离子交换B的交换柱吸附钼;吸附饱和的A柱解吸附,收集解吸液,蒸发结晶得到高铼酸铵产品;吸附饱和的B柱解吸附,收集解吸液,蒸发结晶得到钼酸铵产品。工艺中预处理步骤,铼无损失,钼损失率<8%,处理后液进入离子交换,该工艺较直接吸附工艺,可以提高树脂A对铼的吸附容量,同时由于改变了溶液的酸度和杂质离子含量,实现了树脂B对钼的高效吸附。
权利要求
1.一种从钼精矿焙烧淋洗液中协同回收钼铼的方法,其特征在于,包括以下步骤:
1)将钼冶炼废酸与预处理剂混合搅拌,且控制搅拌终点pH值在0.5~1.5之间,之后进行过滤;
2)将滤液进入A柱吸附铼,A柱吸附后液进入B柱吸附钼;
3)A柱吸附饱和后解吸附,收集高铼解吸液,蒸发结晶得到高铼酸铵产品;B柱吸附饱和后 解吸附,收集高钼解吸液,蒸发结晶得到钼酸铵产品;
其中,采用预处理剂为CaO、CaCO
2.根据权利要求1所述的方法,其特征在于,步骤1)中,采用的预处理剂加入量为每m³淋洗液中加入20kg~150kg。
3.根据权利要求1所述的方法,其特征在于,步骤1)中,预处理过程中同时加入氧化剂,保持溶液为浅黄色,加入的氧化剂为高氯酸、氯酸钾、双氧水、次氯酸钠、次氯酸钙中的一种或者几种组合。
4.根据权利要求1所述的方法,其特征在于,步骤1)中,预处理过程控制温度在10~50℃之间,搅拌时间在30~70min。
5.根据权利要求1所述的方法,其特征在于,步骤2)中,A柱所采用的阴离子交换树脂为复合胺基乙烯系大孔弱碱型阴离子交换树脂,B柱采用的树脂为叔胺基丙烯酸系大孔弱碱型阴离子交换树脂。
6.根据权利要求5所述的方法,其特征在于,A柱和B柱装填的离子交换树脂柱在使用前进行碱洗、酸洗和转化处理,其中,碱洗采用浓度1%~10%的NaOH溶液,酸洗和转化处理分别采用浓度1%~10%的盐酸或硫酸溶液。
7.根据权利要求6所述的方法,其特征在于:A柱和B柱在碱洗、酸洗和转化处理中,各溶液的用量分别为树脂体积的1~10倍。
8.根据权利要求1所述的方法,其特征在于,步骤2)中,A柱、B柱的进液流速一致,均为2~5BV/h。
9.根据权利要求1所述的方法,其特征在于,A柱吸附后液中铼浓度等于或接近于进液浓度时,A柱吸附饱和;B柱吸附后液中钼浓度等于或接近于进液浓度时,B柱吸附饱和。
10.根据权利要求1所述的方法,其特征在于,步骤3)中,A柱解吸附采用浓度1%~5%的氨水;B柱解吸附采用浓度为3~10%的氨水。
11.根据权利要求10所述的方法,其特征在于,A柱和B柱解吸附采用的氨水的用量为A柱和B柱树脂体积的1~20倍,氨水流速为0.1~5 BV/h。
12.根据权利要求1所述的方法,其特征在于,步骤3)中,高铼解吸液经减压浓缩后,加入双氧水和氨水,蒸发结晶,即得高铼酸铵。
13.根据权利要求12所述的方法,其特征在于,双氧水的加入量为浓缩液体积的1%~20%,氨水的加入量为浓缩液体积的1%~10%。
14.根据权利要求1所述的方法,其特征在于,步骤3)中,高铼解吸液蒸发结晶操作分两次进行,第一次蒸发至原体积的1%~10%,过滤,所得晶体经水溶解后进行二次蒸发结晶,至原体积的1%~10%,过滤,即得高纯度的高铼酸铵。
15.根据权利要求1所述的方法,其特征在于,步骤3)中,高钼解吸液蒸发结晶分二次进行,第一次蒸发至原体积的0.5%~5%,过滤,所得晶体经水溶解后进行二次蒸发结晶,至原体积的0.5%~5%,过滤,即得高纯度的钼酸铵。
说明书
技术领域
本发明涉及一种从钼精矿焙烧淋洗液协同回收铼钼的方法,属于金属铼和钼的综合回收利用技术领域。
背景技术
钼精矿焙烧过程中产生的烟气在进入制酸前,需要进行喷淋处理,以脱除烟气中的细小颗粒物,并将烟气中的氟脱除。在喷淋工序过程中,部分升华的钼、铼以及未被收尘系统捕获的细小钼、铼氧化物在中进入到淋洗液中,钼冶炼企业的淋洗液中钼含量一般在0.6~5g/L,铼含量在10~100mg/L,具有很好的综合回收价值。
由于淋洗液的组成复杂和高酸度条件,使得钼铼的协同利用难度大。一方面,由于淋洗液中的钼和铼主要以阴离子的形式存在,由于淋洗液中二氧化硫溶解度接近饱和,亚硫酸根含量较高,同时还含有硫酸根、氟离子、硅酸根、硒酸根离子等诸多阴离子,给钼、铼的富集分离带来了困难;另外,淋洗液中酸度比较高,有文献表明,高酸度环境下,钼酸根离子会转化为MoO2
目前,对钼冶炼废酸中有价组分综合回收的技术方法,更多的是关于回收铼,并且有企业已经进行了工业化应用,但文献很少涉及钼铼协同利用的技术方法。
废酸中回收铼的工艺分为两种,分别是萃取法和离子交换法。使用溶剂萃取回收钼冶炼废酸中的铼,回收率不高,而且萃取剂用量大,操作复杂,有机物挥发和萃取废液容易造成二次污染。
离子交换法回收铼,比较常见的是废酸中和-离子交换树脂吸附,该工艺可以实现铼的高效回收。废酸中和-离子交换法回收铼,早期一般采用强碱性阴离子交换树脂,铼虽然可以达到很好的吸附率,但存在循环使用性能差,需要采用高浓度有一定毒性的硫氰酸铵溶液及吸附,近年来,逐渐采用弱碱性阴离子交换树脂进行铼的吸附,但存在操作复杂、钼无法协同利用的问题。主要原因在于废酸中和过程中,需要经酸度调整到6-7甚至更高,此时大部分的钼也随之进入到中和渣中,导致钼无法回收。如公告号CN102173457B的发明专利公开了一种从含有钼铼的废液中制备高铼酸铵的方法,包括:向含有钼铼的废液中,加入双氧水至溶液呈黄色,再加入混配剂(氢氧化钙与氧化钙按照质量比5:1混合)至溶液的pH值为6~7,压滤分离;收集滤液,滤液通过弱碱型阴离子交换树脂柱(叔胺基苯乙烯系阴离子交换柱)进行柱上吸附,当流出液中铼的浓度不变时停止吸附,用NH3·H2O洗脱,将收集的洗脱液于98~100℃下加热浓缩,冷却、结晶即得高铼酸铵产品。虽然采用该方法可使铼的浓度富集提高近20倍,铼的洗脱率大于98%,回收率大于93%,高铼酸铵产品的纯度高达99.5%以上,但钼却无法回收。
郑州所发明了一种废酸直接离子交换法回收铼的工艺,简化了铼吸附的程序,并申请了公告号为CN105384195A的发明专利,工艺是将钼冶炼废酸过滤后,直接进入离子交换吸附,氨水解吸附后,将解吸液两次蒸发结晶,得到纯度在99.99%以上的高铼酸铵产品,离子交换过程铼收率可以达到99%以上,富集倍数在150倍以上,循环使用性能好,为钼冶炼废酸中铼的回收提供了很好的工艺。但该工艺存在着在高酸度环境下,铼饱和吸附容量小、吸附速度慢的问题,同时工艺未考虑钼的协同回收问题。
发明内容
本发明的目的是提供一种从钼冶炼废酸中协同回收铼和钼的方法,其工艺简单,不仅仅提高了铼的吸附速度和吸附容量,同时吸附后液采用常规的弱碱性阴离子交换树脂将废酸中的钼高效综合回收。
为了实现以上目的,本发明所采用的技术方案是:
一种从钼精矿焙烧淋洗液中协同回收钼铼的方法,包括以下步骤:
1)将钼冶炼废酸与预处理剂混合搅拌,之后进行过滤;
2)将滤液进入A柱吸附铼,A柱吸附后液进入B柱吸附钼;
3)吸附饱和的A柱解吸附,收集高铼解吸液,蒸发结晶得到高铼酸铵产品;吸附饱和的B柱解吸附,收集高钼解吸液,蒸发结晶得到钼酸铵产品。
进一步的,步骤1)中采用预处理剂为CaO、MgO中的一种或者几种的组合。
进一步的,步骤1)采用的预处理剂加入量为每m
进一步的,步骤1)所述的预处理过程中,同时加入适量的氧化剂,保持溶液为浅黄色,加入的氧化剂为高氯酸、氯酸钾、双氧水、次氯酸钠、次氯酸钙中的一种或者几种组合。
进一步的,步骤1)中预处理过程控制温度在10~50℃之间,搅拌时间在30~70min。
进一步的,步骤2)中,A柱所采用的阴离子交换树脂为复合胺基乙烯系大孔弱碱型阴离子交换树脂,B柱采用的树脂为叔胺基丙烯酸系大孔弱碱型阴离子交换树脂。
进一步的,步骤2)中,A柱、B柱装填的离子交换树脂柱在使用前进行碱洗、酸洗和转化处理,其中碱洗采用浓度1%~10%的NaOH溶液,酸洗和转化处理分别采用浓度1%~10%的盐酸或硫酸溶液。
进一步的,步骤2)中,A柱和B柱在碱洗、酸洗和转化处理中,各溶液的用量分别为树脂体积的1~10倍。
进一步的,步骤2)中A柱、B柱的进液流速一致,均为2~5BV/h,A柱吸附后液中铼浓度等于或接近于进液浓度时,A柱吸附饱和,B柱吸附后液中钼浓度等于或接近于进液浓度时,B柱吸附饱和。
进一步的,步骤3)中A柱解吸采用浓度1%~5%的氨水。B柱解吸采用浓度为3~10%的氨水。
进一步的,步骤3)中,A柱和B柱氨水的用量为树脂体积的1~20倍,流速为0.1~5BV/h。
进一步的,步骤3)中,高铼解吸液经减压浓缩后,加入双氧水和氨水,蒸发结晶,即得高铼酸铵,其中,双氧水的加入量为浓缩液体积的1%~20%,氨水的加入量为浓缩液体积的1%~10%。
进一步的,步骤3)中,高铼解吸液蒸发结晶操作分两次进行,第一次蒸发至原体积的1%~10%,过滤,所得晶体经水溶解后进行二次蒸发结晶,至原体积的1%~10%,过滤,即得高纯度的高铼酸铵。
进一步的,步骤3)中,高钼解吸液经减压蒸发浓缩分二次进行,第一次蒸发至原体积的0.5%~5%,过滤,所得晶体经水溶解后进行二次蒸发结晶,至原体积的0.5%~5%,过滤,即得高纯度的高钼酸铵。
与现有技术相比,本发明的有益效果是:
本发明通过加入预处理剂的方式,脱除了废酸中部分杂质离子,同时调整了废酸的酸度,在不损失铼的情况下,将钼转换为可回收的存在状态,不仅仅提高了铼的吸附速度和吸附容量,同时实现了90%以上的钼收率,实现了钼铼的协同利用,提高了废酸中有价元素的综合利用水平。
附图说明
图1为石灰加入量对钼铼回收率的影响。
图2为石灰加入量对硫氟硅脱除率的影响。
图3为不同石灰加入量中和滤渣XRD结果。
图4为反应时间对硫氟硅的脱除率影响。
图5为反应温度对硫氟硅脱除率的影响。
图6为预处理终点pH值对铼静态吸附性能的影响。
图7为预处理终点pH值对钼静态吸附性能的影响。
图8为预处理前后废酸中钼的动态吸附曲线。
图9为钼的静态解吸附曲线。
图10为从钼冶炼废酸中回收铼的工艺流程示意图。
具体实施方式
下面结合附图和实施例对本发明作进一步详细说明,但不构成对本发明的任何限制。
本发明采用预处理剂,将废酸中杂质离子选择性部分脱除后,同时调整了废酸的酸度,在不损失铼的情况下,将钼离子转换为可离子交换回收的存在状态,后续先采用复合胺基乙烯系弱碱型阴离子交换树脂吸附铼,再采用叔胺基丙烯酸系大孔弱碱型阴离子交换树脂吸附钼,将吸附铼、钼的离子交换柱分别解吸附后,可以得到高铼溶液和高钼溶液,将两种溶液分别蒸发结晶,得到高铼酸铵、钼酸铵产品。该技术方法相比直接离子交换法从钼精矿焙烧淋洗液中回收铼的工艺,在不损失铼的情况吸纳,提高了铼的吸附速度和吸附容量,同时将废酸中的大部分钼进行综合回收,实现废酸中有价组分钼、铼的协同利用。采用该工艺,可以将铼的吸附时间缩短20%以上,吸附容量提高10%以上,工艺实现铼回收率>98%,钼回收率>90%,经两次蒸发结晶,铼酸铵纯度达99.9%以上,钼酸铵纯度>99%。该工艺吸附速度快、吸附容量大、操作简便,回收工艺环保,不产生新的污染物,易于进行规模化生产应用。
试验中所采用的废酸来自于某大型钼冶炼企业,废酸中主要化学元素含量如表1所示。试验中采用的氧化钙、钼酸铵、铼酸铵等试剂均为分析纯。实验中采用的吸铼树脂为ZS70树脂(国产弱碱性阴离子交换树脂),采用的吸铼树脂为D314树脂(国产弱碱性阴离子交换树脂)。
为了确定淋洗液中铼的存在形式,对淋洗液进行了离子色谱分析,结果表明,淋洗液中硫主要以SO4
表1废酸中主要化学元素含量
从钼冶炼废酸中回收铼的工艺过程如图10所示。在一定温度条件下,取200ml钼冶炼废酸到烧杯中,搅拌条件下加入生石灰,分别控制不同的石灰加入量、反应时间、反应温度,中和反应完毕后,过滤,滤液和洗水量取体积,对滤液进行元素分析,将滤渣烘干,对滤渣进行XRD分析。将滤液进入A柱吸附铼,A柱吸附后液进入B柱吸附钼;A柱吸附饱和后解吸附,收集高铼解吸液,蒸发结晶得到高铼酸铵产品;B柱吸附饱和解吸附,收集高钼解吸液,蒸发结晶得到钼酸铵产品。
实施例1:废酸预处理前后钼铼静态吸附对比实验
取淋洗液分别加入不同量CaO,反应100min后,过滤并少量洗涤(定量洗涤),将滤液和洗水混合后,测定滤液的pH值,分析溶液中的钼、铼含量,然后根据检测结果,配入少量的高铼酸铵和钼酸铵,调整溶液中的钼铼含量与未处理淋洗液中钼铼含量一致。
量取废酸和不同石灰加入量预处理后得到的溶液各250ml,分别放入到500ml锥形瓶,搅拌条件下各放入1ml D314树脂,吸附不同时间后取样,测定溶液中钼含量;相同试验条件,放入1ml ZS70树脂吸附铼,吸附不同时间后取样,测定溶液中铼含量。
对预处理前后的废酸进行了静态吸附铼的试验,预处理前后废酸酸度和铼的静态平衡吸附容量如表2所示;不同pH(不同CaO加入量)条件下,C/C0(Re)与不同吸附时间的关系如图6所示,图中的C/C0是指溶液中初始铼浓度(C0)与吸附一定时间后溶液中铼浓度(C)的比值,图中数据为百分比。
从表2中数据可以看出,随CaO加入量增加,预处理后液的pH逐渐提高,但在试验的范围内,预处理后的废酸的pH值仍远低于7,保持一定的酸度。考虑到在吸附24h后,吸附后液中铼浓度不再发生较大变化(如图6,认为吸附达到吸附平衡,采用24h时的数据计算平衡吸附容量。采用预处理后pH=3.46(对应CaO加入量为75g·L
从图6可以看出,在吸附初期(0-60min),预处理前后废酸中C/C0(Re)与吸附时间的关系曲线基本重合;在吸附中期(60-120min),pH=3.46的废酸(对应CaO加入量为75g·L
表2预处理前后废酸的静态吸附铼试验结果
对预处理前后的废酸进行了静态吸附钼试验,预处理前后废酸酸度和钼的静态平衡吸附容量如表3所示;不同pH(不同CaO加入量)条件下,C/C0(Mo)与不同吸附时间的关系如图7所示,图中的C/C0是指溶液中初始钼浓度(C0)与吸附一定时间后溶液中钼浓度(C)的比值,图中数据为百分比。
从图7可以看出,铼的静态吸附试验不同,在吸附初期,预处理前后废酸的C/C0(Mo)与吸附时间曲线就有比较大的差异,整体上看,预处理后的吸附效果得到改善;pH=1.75(对应CaO加入量为50g·L
从表3中数据可以看出,预处理后的三组废酸,钼的静态平衡吸附容量都得到了一定程度的提高;采用pH=1.75的预处理后废酸,静态平衡吸附容量最大,为147.63mg·ml
因此,从钼吸附容量最优的角度考虑,在CaO加入量为50g·L
表3预处理前后废酸的静态吸附铼试验结果
实施例2:钼动态吸附试验
取预处理好的D314树脂10ml,装入试验用离子交换柱中,用恒流泵将待淋洗液以1BV的流速进入离子交换柱,一定时间点取流出液样品,检测钼含量。
X射线衍射采用荷兰PhilipsX.PertMPD型X射线衍射仪,CuKα射线,管电压40kV,管电流30mA,扫描速率0.12°·s
石灰中和过程中可能发生的化学反应:
CaO+H2SO4=CaSO4+H2O (1)
CaO+H2SO3=CaSO3+H2O (2)
CaO+H2SiF6=CaSiF2+H2O (3)
CaO+H2MoO4=CaMoO4+H2O (4)
CaO+2HF=CaF2+H2O(5)
将预处理前和预处理后废酸,在温度25℃、流速1BV·h
将吸附接近饱和的D314树脂吸附柱,在温度25℃、流速0.5BV/h条件下,采用10%的氨水进行动态解吸附试验,结果如图9所示。可以看出,在解吸液液量为1.5BV左右是,解吸液钼浓度最高,达到66.51g·L
实施例3:石灰加入量
25℃条件下,取淋洗液200ml到烧杯中,搅拌条件下,分别加入不同量的CaO,反应100min后,过滤,对滤液和洗水计量后,进行多元素分析,CaO加入量与钼铼回收率之间的关系如图1所示,CaO加入量与硫、氟、硅等杂质离子脱除率的关系如图2所示。
图1可看出,随CaO加入量在25g·L
图2可看出,随CaO加入量增加,硫、氟、硅的脱除率逐渐提高,在CaO加入量为50g·L
表4列出不同钙化合物的溶度积常数,排序依次为CaF2<CaSO3<Ca2SiO4<CaSO4,可以判断,氟的脱除效果至少应高于硫,但实际上脱除效果较差,这可能是由于在钼冶炼厂的烟气喷淋系统中,往往加入大量的水玻璃,将游离的F
表5列出高铼酸钙在不同温度的溶解度,可以看出,在常温条件下高铼酸钙的溶解度比较高,另外,废酸中的铼含量很低。可以判断,在中和过程中,铼不会因为钙的加入而产生较大损失。
表4不同类型钙盐的溶度积常数
表5高铼酸钙在不同温度的溶解度
从图3可看出,滤渣主要是由CaSO4(H2O)0.5、CaSO4(H2O)2、CaSO4等组成,在CaO入量大于75g·L
废酸中含有一定量的硫酸根、亚硫酸根,沉淀以后,在空气中,大部分的亚硫酸钙氧化为硫酸钙,因此,在XRD图谱中未看到亚硫酸钙的物相。在XRD图谱中,未见到明显的CaMoO4、CaF2和CaSiO4的峰,说明适量加入石灰,可以控制钼损失率较低或者不损失,在此过程中硅和氟的脱除效果较差。
实施例4:时间试验
25℃条件下,取淋洗液200ml,CaO加入量为75g·L
反应时间从30min到160min,对应的硫脱除率从62.44%增加到88.77%,延长反应时间有利于硫的脱除。这可能是由于在淋洗液中加入石灰后,反应(1)、(2)快速进行,在石灰颗粒表面生成微溶于水的硫酸钙、亚硫酸钙壳,阻碍了后续反应的快速发生,因此,在较长的反应时间内才能达到比较高的脱硫率。随着反应时间的延长,硅和氟脱除率变化相对较小,反应时间在160min时,硅和氟脱除率分别为15.67%、29.16%。在时间试验中,钼铼的回收率均接近100%。综合考虑,确定最佳的中和时间为100min。
实施例5:温度试验
取淋洗液200ml,CaO加入量为75g·L
从上述实施例可知:
(1)钼冶炼废酸采用石灰进行中和时,钼铼损失率随CaO加入量增加而提高,CaO加入量<75g·L
(2)在保障钼、铼损失率较低的情况下,废酸中硫、氟、硅不能完全脱除;其中,硫的脱除率高于氟和硅的脱除率;在CaO加入量50g·L
(3)废酸中加入50g·L
(4)废酸中加入50g·L
(5)采用废酸适度中和法,可以在不损失钼铼的情况下,大幅度提高废酸中钼的离子交换吸附性能,为钼的综合回收提供了很好的技术途径。
一种从钼精矿焙烧淋洗液协同回收铼钼的方法专利购买费用说明
Q:办理专利转让的流程及所需资料
A:专利权人变更需要办理著录项目变更手续,有代理机构的,变更手续应当由代理机构办理。
1:专利变更应当使用专利局统一制作的“著录项目变更申报书”提出。
2:按规定缴纳著录项目变更手续费。
3:同时提交相关证明文件原件。
4:专利权转移的,变更后的专利权人委托新专利代理机构的,应当提交变更后的全体专利申请人签字或者盖章的委托书。
Q:专利著录项目变更费用如何缴交
A:(1)直接到国家知识产权局受理大厅收费窗口缴纳,(2)通过代办处缴纳,(3)通过邮局或者银行汇款,更多缴纳方式
Q:专利转让变更,多久能出结果
A:著录项目变更请求书递交后,一般1-2个月左右就会收到通知,国家知识产权局会下达《转让手续合格通知书》。
动态评分
0.0