专利转让平台_买专利_卖专利_中国高校专利技术交易-买卖发明专利上知查网

全部分类
全部分类
一种聚合物电解质的制备方法及其应用

一种聚合物电解质的制备方法及其应用

IPC分类号 : C08F120/28I,C08F4/00I,C08F4/08I,C08F122/14I,C08J5/18I,H01M10/0565I

申请号
CN201910315593.3
可选规格

    看了又看

  • 专利类型:
  • 法律状态: 有权
  • 公开号: CN110172115B
  • 公开日: 2019-08-27
  • 主分类号: C08F120/28I
  • 专利权人: 华中科技大学

专利摘要

专利摘要

本发明属于聚合物电解质领域,涉及一种聚合物电解质的制备方法及其应用。以含有巯基末端的第一反应物与两端含有丙烯酸酯末端的第二反应物为原料,在主催化剂和助催化剂作用下,发生巯基‑迈克尔加成反应,制备得到聚合物电解质;其中:所述第一反应物中至少含有三个巯基;所述主催化剂用于夺取所述第一反应物的巯基上的质子,然后形成硫醇负离子,硫醇负离子用于进攻所述第二反应物中的缺电子双键;所述助催化剂为金属盐;所述金属盐的阳离子与所述第二反应物发生络合反应,降低所述丙烯酸酯的双键的电子云密度,促进所述硫醇负离子进攻丙烯酸酯的双键发生巯基‑迈克尔加成反应,提高该加成反应的反应速率和转化率。

权利要求

1.一种金属盐助催化的巯基-迈克尔加成反应的方法,其特征在于,以含有巯基末端的第一反应物与末端含有缺电子双键的第二反应物为原料,在主催化剂和助催化剂作用下,发生巯基-迈克尔加成反应;其中:

所述主催化剂用于夺取所述第一反应物的巯基上的质子,形成硫醇负离子,硫醇负离子用于进攻所述第二反应物中的缺电子双键;

所述助催化剂为金属盐;所述金属盐的阳离子与所述第二反应物发生络合反应,降低所述缺电子双键的电子云密度,促进所述硫醇负离子进攻缺电子的双键发生巯基-迈克尔加成反应,提高该加成反应的反应速率和转化率;

所述第二反应物为2-丙烯酸-2-甲氧基乙酯以及聚乙二醇二丙烯酸酯中的任意一种;

所述金属盐为高氯酸锂、双三氟甲烷磺酰亚胺锂、三氟甲磺酸锂、高氯酸钠以及高氯酸钾中的任意一种。

2.如权利要求1所述的加成反应的方法,其特征在于,所述金属盐与所述第一反应物的巯基的摩尔比为1:5~1:100;所述主催化剂与所述第一反应物的巯基的摩尔比为1:20~1:5。

3.如权利要求1所述的加成反应的方法,其特征在于,所述第一反应物为1-己硫醇、3-巯基丙酸甲酯、1,6-己二硫醇、三羟甲基丙烷三(3-巯基丙酸酯)、四(3-巯基丙酸)季戊四醇酯以及八巯基多面体低聚倍半硅氧烷中的任意一种。

4.如权利要求1所述的加成反应的方法,其特征在于,所述主催化剂为正己胺、二乙胺、三乙胺或四甲基胍。

5.如权利要求1所述的加成反应的方法,其特征在于,所述迈克尔加成反应的反应时间不低于5分钟。

6.一种聚合物电解质的制备方法,其特征在于,以含有巯基末端的第一反应物与两端含有丙烯酸酯末端的第二反应物为原料,在主催化剂和助催化剂作用下,发生巯基-迈克尔加成反应,制备得到聚合物电解质;其中:

所述第一反应物中至少含有三个巯基;

所述主催化剂用于夺取所述第一反应物的巯基上的质子,然后形成硫醇负离子,硫醇负离子用于进攻所述第二反应物中的缺电子双键;

所述助催化剂为金属盐;所述金属盐的阳离子与所述第二反应物发生络合反应,降低所述丙烯酸酯的双键的电子云密度,促进所述硫醇负离子进攻丙烯酸酯的双键发生巯基-迈克尔加成反应,提高该加成反应的反应速率和转化率;

所述金属盐为高氯酸锂、双三氟甲烷磺酰亚胺锂、三氟甲磺酸锂、高氯酸钠以及高氯酸钾中的任意一种。

7.如权利要求6所述的制备方法,其特征在于,包括如下步骤:

(1)将含有巯基末端的第一反应物与两端含有丙烯酸酯末端的第二反应物混合溶解于有机溶剂中,得到反应物的混合溶液;其中所述含有巯基末端的第一反应物的巯基与所述第二反应物的双键的摩尔比为1:0.5~1:2;

(2)向步骤(1)所述反应物的混合溶液中加入金属盐,混合均匀后得到混合溶液,其中所述第二反应物中的乙氧基与所述金属盐的阳离子的摩尔比为5:1~20:1;

(3)向步骤(2)所述混合溶液中加入主催化剂,混合均匀后得到反应混合液,所述反应混合液中所述主催化剂与所述含有巯基末端的第一反应物的巯基的摩尔比为1:25~1:2,将该反应混合液浇铸成膜,干燥制得聚合物电解质膜。

8.如权利要求6或7所述的制备方法,其特征在于,所述含有巯基末端的第一反应物为三羟甲基丙烷三(3-巯基丙酸酯)、四(3-巯基丙酸)季戊四醇酯以及八巯基多面体低聚倍半硅氧烷中的任意一种;

所述第二反应物为聚乙二醇二丙烯酸酯,其相对分子质量为200、400或600。

9.如权利要求7所述的制备方法,其特征在于

所述主催化剂为正己胺、三乙胺或四甲基胍;

所述有机溶剂为四氢呋喃、丙酮或乙腈。

10.如权利要求6至9任一项所述的制备方法制备得到的聚合物电解质的应用,其特征在于,用作锂离子电池的电解质。

说明书

技术领域

本发明属于聚合物电解质领域,涉及一种聚合物电解质的制备方法及其应用,更具体地,涉及一种依靠金属盐助催化的巯基-迈克尔加成反应制备聚合物电解质的方法。

背景技术

“点击”化学自2001年由Kolb、Finn和Sharpless提出以来,引起了非常广泛的关注,其优点包括反应速率快,产率可定量,几乎没有副反应,并且避免了一系列普通合成反应的缺点,比如产物分离耗时,以及严苛的反应条件。因此,“点击”化学被广泛应用于聚合物功能化及网络制备等大分子合成领域中。巯基-烯反应的途径通常有两种:(1)自由基介导的加成反应,通常称为巯基-烯反应;(2)碱催化剂或亲核试剂催化的巯基-迈克尔加成反应。然而,较高活性催化体系的构建通常需要价格昂贵、毒性较大的催化剂,如有机磷催化剂,极大地限制了巯基-迈克尔加成反应的绿色性和应用范围。

为避免价格昂贵、毒性较大的催化剂的使用,从催化方式着手发展新型绿色巯基-迈克尔加成反应成为目前的研究热点。比如使用光碱进行高效、可控的巯基-烯反应,但是该类催化剂存在合成复杂、储存困难、需要特定光源、操作过程繁琐等缺点;另外,使用以氮为中心的催化剂,如1,4-二叠氮双环(2.2.2)辛烷、4-二甲氨基吡啶,通过亲核加成途径进行高效巯基-迈克尔加成反应,其催化作用远远优于伯胺(己胺)、仲胺(二乙胺)和叔胺(三乙胺),该体系虽然成功实现了用廉价易得的催化剂高效催化反应,但缺乏对反应的控制性,极大地限制了反应体系的适用范围。

锂离子电池以其循环寿命长、能量密度高和环境友好等诸多优点,已经在便携式数字设备和电动汽车中得到广泛的应用。现今的商品化锂离子电池通常使用液态电解质,存在易燃、易爆、有机溶剂易挥发等缺点,会造成重大安全隐患。基于液态电池存在的许多不足,固态电解质的出现能够有效地解决液态电池在实际应用过程中漏液、易短路等问题,电化学稳定性以及电极稳定性也较强,大大提高锂离子电池的安全性。

然而,结晶度高是目前固态电解质面临的一项重要挑战,所以固态聚合物电解质的研究趋势主要在于抑制聚合物结晶。为此,研究人员已经开发出的策略包括制备交联网状聚合物、嵌段共聚物或梳形聚合物,但是这些方法存在生产工艺复杂、反应条件严苛的问题,不利于实际应用。

发明内容

针对现有技术的以上缺陷或改进需求,本发明提供了一种聚合物电解质的制备方法及其应用,其依靠金属盐助催化的巯基-迈克尔加成反应来实现,其中利用金属盐阳离子与含有缺电子末端双键的反应物的络合作用,降低缺电子双键的电子云密度,更易于硫醇负离子进攻缺电子的双键发生巯基-迈克尔加成反应,提高该加成反应的反应速率和转化率,从而提高电解质的交联密度,抑制聚合物电解质的结晶,由此解决现有的固态电解质制备方法存在的生产工艺复杂、反应条件严苛,制得的固态电解质结晶度高的技术问题。

为实现上述目的,按照本发明的一个方面,提供了一种金属盐助催化的巯基-迈克尔加成反应的方法,以含有巯基末端的第一反应物与末端含有缺电子双键的第二反应物为原料,在主催化剂和助催化剂作用下,发生巯基-迈克尔加成反应;其中:

所述主催化剂用于夺取所述第一反应物的巯基上的质子,形成硫醇负离子,硫醇负离子用于进攻所述第二反应物中的缺电子双键;

所述助催化剂为金属盐;所述金属盐的阳离子与所述第二反应物发生络合反应,降低所述缺电子双键的电子云密度,促进所述硫醇负离子进攻缺电子的双键发生巯基-迈克尔加成反应,提高该加成反应的反应速率和转化率。

优选地,所述第一反应物为1-己硫醇、3-巯基丙酸甲酯、1,6-己二硫醇、三羟甲基丙烷三(3-巯基丙酸酯)、四(3-巯基丙酸)季戊四醇酯以及八巯基多面体低聚倍半硅氧烷中的任意一种;

所述第二反应物为丙酯酸己酯、2-丙烯酸-2-甲氧基乙酯以及聚乙二醇二丙烯酸酯中的任意一种;

所述金属盐为高氯酸锂、双三氟甲烷磺酰亚胺锂、三氟甲磺酸锂、高氯酸钠以及高氯酸钾中的任意一种。

优选地,所述金属盐与所述第一反应物的巯基的摩尔比为1:5~1:100;所述主催化剂与所述第一反应物的巯基的摩尔比为1:20~1:5。

优选地,所述主催化剂为正己胺、二乙胺、三乙胺或四甲基胍。

优选地,所述迈克尔加成反应的反应时间不低于5分钟。

优选地,所述反应时间为5-30分钟。

按照本发明的另一个方面,提供了一种聚合物电解质的制备方法,以含有巯基末端的第一反应物与两端含有丙烯酸酯末端的第二反应物为原料,在主催化剂和助催化剂作用下,发生巯基-迈克尔加成反应,制备得到聚合物电解质;其中:

所述第一反应物中至少含有三个巯基;

所述主催化剂用于夺取所述第一反应物的巯基上的质子,然后形成硫醇负离子,硫醇负离子用于进攻所述第二反应物中的缺电子双键;

所述助催化剂为金属盐;所述金属盐的阳离子与所述第二反应物发生络合反应,降低所述丙烯酸酯的双键的电子云密度,促进所述硫醇负离子进攻丙烯酸酯的双键发生巯基-迈克尔加成反应,提高该加成反应的反应速率和转化率。

优选地,所述的制备方法,包括如下步骤:

(1)将含有巯基末端的第一反应物与两端含有丙烯酸酯末端的第二反应物混合溶解于有机溶剂中,得到反应物的混合溶液;其中所述含有巯基末端的第一反应物的巯基与所述第二反应物的双键的摩尔比为1:0.5~1:2;

(2)向步骤(1)所述反应物的混合溶液中加入金属盐,混合均匀后得到混合溶液,其中所述第二反应物中的乙氧基与所述金属盐的阳离子的摩尔比为5:1~20:1;

(3)向步骤(2)所述混合溶液中加入主催化剂,混合均匀后得到反应混合液,所述反应混合液中所述主催化剂与所述含有巯基末端的第一反应物的巯基的摩尔比为1:25~1:2,将该反应混合液浇铸成膜,干燥制得聚合物电解质膜。

优选地,所述含有巯基末端的第一反应物为三羟甲基丙烷三(3-巯基丙酸酯)、四(3-巯基丙酸)季戊四醇酯以及八巯基多面体低聚倍半硅氧烷中的任意一种;

所述第二反应物为聚乙二醇二丙烯酸酯,其相对分子质量为200、400或600。

优选地,所述金属盐为高氯酸锂、双三氟甲烷磺酰亚胺锂、三氟甲磺酸锂、高氯酸钠以及高氯酸钾中的任意一种。

优选地,所述主催化剂为正己胺、二乙胺、三乙胺或四甲基胍中的任意一种。

优选地,所述有机溶剂为四氢呋喃、丙酮或乙腈中的任意一种。

按照本发明的另一个方面,提供了所述的制备方法制备得到的聚合物电解质的应用,用作锂离子电池的电解质。

总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:

(1)本发明提供了一种金属盐助催化的巯基-迈克尔加成反应的方法,其以含有巯基末端的第一反应物与含有缺电子双键的第二反应物为原料,在主催化剂和助催化剂作用下,发生巯基-迈克尔加成反应,助催化剂为金属盐;金属盐的阳离子与第二反应物发生络合反应,降低所述缺电子双键的电子云密度,促进所述硫醇负离子进攻缺电子的双键发生巯基-迈克尔加成反应,提高该加成反应的反应速率和转化率。该加成反应的转化率提高,在制备聚合物电解质时,相当于反应物单体发生交联反应更完全,制备的聚合物电解质膜交联程度更高,有利于抑制其结晶,因此,利用本发明改进的巯基-迈克尔加成方法制备聚合物电解质,有利于降低固态电解质的结晶度。

(2)本发明依靠金属盐助催化的巯基-迈克尔加成反应制备聚合物电解质,反应体系使用金属盐作为助催化剂,避免其他价格昂贵、毒性较大催化剂的使用,克服了现有技术中三乙胺催化的巯基-迈克尔加成反应的反应速率和转化率较低的问题,降低对环境的损害程度及反应成本。

(3)利用本发明提供的改进的巯基-迈克尔加成反应制备固态聚合物电解质,相对于现有技术,该加成反应的转化率提高,在制备聚合物电解质时,相当于反应物单体发生交联反应更完全,交联程度更高,反应物的交联结构有利于抑制其结晶,因此,利用本发明改进的巯基-迈克尔加成方法制备聚合物电解质,有利于降低固态电解质的结晶度。

(4)通过金属盐阳离子与第二反应物的络合作用降低双键的电子云密度,更易于硫醇负离子进攻缺电子的双键发生巯基-迈克尔加成反应,使用廉价易得、毒性较小的三乙胺作为主催化剂,金属盐作为助催化剂,在空气中及室温条件下(如10℃~30℃)进行反应,可避免价格昂贵、毒性较大的有机化合物的使用,反应条件温和、操作简单,是一种新型高效的聚合物电解质的制备方法。

(5)本发明涉及的聚合物电解质的制备方法,可以通过调节金属盐的种类和用量达到对反应速率和产物转化率的有效控制。

(6)本发明提供的聚合物电解质,该电解质中的金属盐具有双重作用,一方面金属盐具有导离子的作用,另一方面,金属盐的存在能够有效解决三乙胺催化的巯基-迈克尔加成反应的反应速率和转化率较低的问题,并且能够通过改变金属盐的用量,达到对反应速率的有效控制,有利于解决聚合物电解质生产工艺复杂、反应条件严苛的问题,具有较高的商业应用价值。

附图说明

图1为本发明实施例3中反应体系[1-己硫醇]0:[2-丙烯酸-2-甲氧基乙酯]0:[金属盐]0=20:20:1室温下反应的实时红外图。

图2为本发明实施例4中通过核磁共振氢谱方法探究金属盐对聚乙二醇二丙烯酸酯的络合作用。

图3为本发明实施例5中通过紫外-可见光谱方法探究金属盐对聚乙二醇二丙烯酸酯的络合作用。

图4为本发明实施例8中制备的聚合物电解质的电导率随温度变化图。

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。

本发明提供了一种金属盐助催化的巯基-迈克尔加成反应的方法,以含有巯基末端的第一反应物与末端含有缺电子双键的第二反应物为原料,在主催化剂和助催化剂作用下,发生巯基-迈克尔加成反应;其中:

所述主催化剂用于夺取所述第一反应物的巯基上的质子,形成硫醇负离子,硫醇负离子用于进攻所述第二反应物中的缺电子双键;

所述助催化剂为金属盐;所述金属盐的阳离子与所述第二反应物发生络合反应,降低所述缺电子双键的电子云密度,促进所述硫醇负离子进攻缺电子的双键发生巯基-迈克尔加成反应,提高该加成反应的反应速率和转化率。

一些实施例中,所述第一反应物为1-己硫醇、3-巯基丙酸甲酯、1,6-己二硫醇、三羟甲基丙烷三(3-巯基丙酸酯)、四(3-巯基丙酸)季戊四醇酯以及八巯基多面体低聚倍半硅氧烷中的任意一种;

所述第二反应物为丙酯酸己酯、2-丙烯酸-2-甲氧基乙酯以及聚乙二醇二丙烯酸酯中的任意一种;

所述金属盐为高氯酸锂、双三氟甲烷磺酰亚胺锂、三氟甲磺酸锂、高氯酸钠以及高氯酸钾中的任意一种。

一些实施例中,所述第一反应物的巯基与所述第二反应物的双键的摩尔比为1:1,此类反应中巯基与双键的反应摩尔比为1:1。所述金属盐与所述第一反应物的巯基的摩尔比为1:5~1:100;所述主催化剂与所述一反应物的巯基的摩尔比为1:20~1:5。

一些实施例中,所述主催化剂为正己胺、二乙胺、三乙胺或四甲基胍中的任意一种。

一些实施例中,所述迈克尔加成反应的反应时间不低于5分钟,优选反应时间为5-30分钟。

一些实施例中,本发明提供的金属盐助催化的巯基-迈克尔加成反应的方法,具体包括以下步骤:

(1)在空气中及室温条件下,将含有巯基末端的第一反应物、含有缺电子双键末端的第二反应物及金属盐混合均匀形成反应混合液;其中,所述含有巯基末端的第一反应物的巯基与所述含有缺电子双键末端的第二反应物的双键的摩尔比为1:1;所述金属盐与所述含有巯基末端的第一反应物的巯基的摩尔比为1:5~1:100;

(2)向所述步骤(1)得到的所述反应混合液中加入主催化剂混合均匀,所述含有巯基末端的第一反应物与所述含有缺电子双键末端的第二反应物进行巯基-迈克尔加成反应;其中,所述主催化剂与所述含有巯基末端的第一反应物的巯基的摩尔比为1:20~1:5。

本发明还提供了一种聚合物电解质的制备方法,以含有巯基末端的第一反应物与两端含有丙烯酸酯末端的第二反应物为原料,在主催化剂和助催化剂作用下,发生巯基-迈克尔加成反应,制备得到聚合物电解质;其中:

所述第一反应物中至少含有三个巯基;

所述主催化剂用于夺取所述第一反应物的巯基上的质子,然后形成硫醇负离子,硫醇负离子用于进攻所述第二反应物中的缺电子双键;

所述助催化剂为金属盐;所述金属盐的阳离子与所述第二反应物发生络合反应,降低所述丙烯酸酯的双键的电子云密度,促进所述硫醇负离子进攻丙烯酸酯的双键发生巯基-迈克尔加成反应,提高该加成反应的反应速率和转化率。

一些实施例中,为了获得固态电解质膜,且使得各反应物分布更加均匀,该制备方法,包括如下步骤:

(1)将含有巯基末端的第一反应物与两端含有丙烯酸酯末端的第二反应物混合溶解于有机溶剂中,得到反应物的混合溶液;其中所述含有巯基末端的第一反应物的巯基与所述第二反应物的双键的摩尔比为1:0.5~1:2;

(2)向步骤(1)所述反应物的混合溶液中加入金属盐,混合均匀后得到混合溶液,其中所述第二反应物中的乙氧基与所述金属盐的阳离子的摩尔比为5:1~20:1;

(3)向步骤(2)所述混合溶液中加入主催化剂,混合均匀后得到反应混合液,所述反应混合液中所述主催化剂与所述含有巯基末端的第一反应物的巯基的摩尔比为1:25~1:2,将该反应混合液浇铸成膜,干燥制得聚合物电解质膜。

为了获得交联聚合物电解质膜,第一反应物中巯基的个数至少为三个,一些实施例中,所述含有巯基末端的第一反应物为三羟甲基丙烷三(3-巯基丙酸酯)、四(3-巯基丙酸)季戊四醇酯以及八巯基多面体低聚倍半硅氧烷中的任意一种。第二反应物须确保两端含有末端丙烯酸酯双键,比如第二反应物可以为为聚乙二醇二丙烯酸酯,其相对分子质量为200、400或600。

一些是实施例中,所述金属盐为高氯酸锂、双三氟甲烷磺酰亚胺锂、三氟甲磺酸锂、高氯酸钠以及高氯酸钾中的任意一种。

一些实施例中,所述主催化剂为正己胺、二乙胺、三乙胺或四甲基胍中的任意一种。所述有机溶剂为四氢呋喃、丙酮或乙腈中的任意一种。

按照本发明制备方法制备得到的聚合物电解质,实验证明其可用作锂离子电池的电解质,具有较高的电导率,30℃时电导率可达1.89×10-5S cm-2,说明该聚合物电解质具有比较低的结晶度。

本发明提供的金属盐助催化的巯基-迈克尔加成反应方法中反应物的转化率可达60%~95%,相应地,根据该方法制备聚合物电解质的转化率同样可以达到60%~95%。

利用本发明提供的改进的巯基-迈克尔加成反应制备固态聚合物电解质,相对于现有技术,该加成反应的转化率提高,在制备聚合物电解质时,相当于反应物单体发生交联反应更完全,制备的聚合物电解质膜交联程度更高,有利于抑制其结晶,因此,利用本发明改进的巯基-迈克尔加成方法制备聚合物电解质,有利于降低固态电解质的结晶度,实验也证实了本发明制得的聚合物电解质具有较高的电导率,结晶度大大降低。

以下为实施例:

实施例1

一种金属盐助催化的巯基-迈克尔加成反应的方法,按照以下步骤进行:

将1-己硫醇、2-丙烯酸-2-甲氧基乙酯和双三氟甲烷磺酰亚胺锂进行反应组分配制,1-己硫醇、2-丙烯酸-2-甲氧基乙酯和双三氟甲烷磺酰亚胺锂摩尔比为5:5:1。配制过程为:将1.41毫升1-己硫醇、1.29毫升2-丙烯酸-2-甲氧基乙酯和0.574克双三氟甲烷磺酰亚胺锂放入圆底烧瓶中,磁力搅拌4小时后,得到反应混合液。

取70微升纯化后的三乙胺加入圆底烧瓶的反应混合液中,三乙胺与1-己硫醇的巯基的摩尔比为1:20,磁力搅拌10秒后迅速取出少量反应混合液,滴加在两片氯化钠盐片之间,进行实时红外测试,计算转化率,30分钟后转化率达到95%。

实施例2

一种金属盐助催化的巯基-迈克尔加成反应的方法,按照以下步骤进行:

将1-己硫醇、2-丙烯酸-2-甲氧基乙酯和双三氟甲烷磺酰亚胺锂进行反应组分配制,1-己硫醇、2-丙烯酸-2-甲氧基乙酯和双三氟甲烷磺酰亚胺锂摩尔比为100:100:1。配制过程为:将1.41毫升1-己硫醇、1.29毫升2-丙烯酸-2-甲氧基乙酯和0.029克双三氟甲烷磺酰亚胺锂放入圆底烧瓶中,磁力搅拌4小时后,得到反应混合液。

取278微升纯化后的三乙胺加入圆底烧瓶的反应混合液中,三乙胺与1-己硫醇的巯基的摩尔比为1:5,磁力搅拌10秒后迅速取出少量反应混合液,滴加在两片氯化钠盐片之间,进行实时红外测试,计算转化率,30分钟后转化率达到90%。

实施例3

一种金属盐助催化的巯基-迈克尔加成反应的方法,按照以下步骤进行:

将1-己硫醇、2-丙烯酸-2-甲氧基乙酯和金属盐进行反应组分配制,1-己硫醇、2-丙烯酸-2-甲氧基乙酯和金属盐摩尔比为20:20:1。配制过程为:将1.41毫升1-己硫醇、1.29毫升2-丙烯酸-2-甲氧基乙酯和相应质量的金属盐放入圆底烧瓶中,磁力搅拌4小时后,得到反应混合液。

取139微升纯化后的三乙胺加入圆底烧瓶的反应混合液中,三乙胺与1-己硫醇的巯基的摩尔比为1:10,磁力搅拌10秒后迅速取出少量反应混合液,滴加在两片氯化钠盐片之间,进行实时红外测试,计算转化率,30分钟后转化率都达到90%以上。

图1显示不同种类金属盐控制的巯基-迈克尔加成反应的实时红外图,其中横坐标为反应时间,纵坐标为转化率,表明通过改变金属盐的种类可以调节反应速率,并且金属盐的阳离子半径越小,反应速率越大。

通过改变金属盐的种类来调节反应速率,分别使用金属盐:高氯酸锂、双三氟甲烷磺酰亚胺锂、三氟甲磺酸锂、高氯酸钠、高氯酸钾重复前述反应混合液的配制和巯基-迈克尔加成反应过程。

实施例4

将聚乙二醇二丙烯酸酯、高氯酸锂纯化后,进行核磁共振氢谱测试组分配制,聚乙二醇二丙烯酸酯和高氯酸锂摩尔比为1:3。配制过程为:称取0.06克聚乙二醇二丙烯酸酯和0.0319克高氯酸锂放入离心管中,再向离心管中加入400微升氘代氯仿,超声震荡1小时,得到核磁共振氢谱混合液。

取50微升核磁共振氢谱混合液和700微升氘代氯仿加入到核磁管中,进行核磁共振氢谱测试。

其他步骤相同,分别制备聚乙二醇二丙烯酸酯和高氯酸锂摩尔比为1:1、1:2以及不添加高氯酸锂的核磁共振氢谱混合液。图2是本实施例得到的核磁共振谱图,横坐标为化学位移;从图2可知,在聚乙二醇二丙烯酸酯中加入高氯酸锂后,由于高氯酸锂和丙烯酸酯的配位作用,在5.75-6.75的化学位移区间内特征峰左移,此区间对应丙烯酸酯中的双键,证明高氯酸锂确实可以降低双键的电子云密度。

实施例5

将聚乙二醇二丙烯酸酯、高氯酸锂纯化后,进行紫外-可见光谱测试组分配制,聚乙二醇二丙烯酸酯和高氯酸锂摩尔比为1:3。配制过程为:称取0.06克聚乙二醇二丙烯酸酯和0.0319克高氯酸锂放入离心管中,再向离心管中加入30毫升1,2-二氯乙烷,超声震荡1小时,得到混合液a。

取1毫升混合液a加入离心管中,再向离心管中加入10毫升1,2-二氯乙烷,得到混合液b。

取100微升混合液a加入离心管中,再向离心管中加入10毫升1,2-二氯乙烷,得到紫外-可见光谱混合液。

图3是本实施例得到的紫外-可见光谱图,横坐标为波长(nm);从图3可知金属盐的加入可以降低聚乙二醇二丙烯酸酯双键的电子云密度,反映在图3上就是曲线发生了左移。

除上述实施例中具体的含有巯基末端的反应物种类外,本发明提出的金属盐助催化的巯基-迈克尔加成反应适用的含有巯基末端的反应物还可以是1-己硫醇、3-巯基丙酸甲酯、1,6-己二硫醇、三羟甲基丙烷三(3-巯基丙酸酯)、四(3-巯基丙酸)季戊四醇酯以及八巯基多面体低聚倍半硅氧烷中的任意一种。

除上述实施例中具体的含有丙烯酸酯末端的反应物种类外,本发明提出的金属盐助催化的巯基-迈克尔加成反应适用的含有丙烯酸酯末端的反应物还可以是丙酯酸己酯、2-丙烯酸-2-甲氧基乙酯以及聚乙二醇二丙烯酸酯中的任意一种。

对比例1

本对比例其他条件同实施例3,不同的是没有采用助催化剂金属盐。实验发现30分钟后反应转化率为5%,说明在没有助催化剂金属盐的情况下,只使用主催化剂时的巯基-迈克尔加成反应的反应速率和转化率比较低。

实施例6

一种聚合物电解质的高效制备方法,包括以下步骤:

将1.222克四(3-巯基丙酸)季戊四醇酯和1.5克分子量为600的聚乙二醇二丙烯酸酯溶解在四氢呋喃中,得到反应物的混合溶液,其中四(3-巯基丙酸)季戊四醇酯的巯基和分子量为600的聚乙二醇二丙烯酸酯的双键的摩尔比为1:0.5。

再按聚乙二醇二丙烯酸酯中乙氧基/Li摩尔比为5:1向反应物的混合溶液中加入0.573克高氯酸锂,磁力搅拌4小时后,得到混合溶液。

向得到的混合溶液中加入56微升三乙胺,磁力搅拌1分钟后,得到反应混合液,其中反应混合液中的三乙胺与四(3-巯基丙酸)季戊四醇酯的巯基的摩尔比为1:25。搅拌均匀后,将反应混合液浇铸于模具中,先室温干燥8小时,然后在80℃下干燥12小时,待溶剂完全除去后,得到聚合物电解质膜。

实施例7

一种聚合物电解质的高效制备方法,包括以下步骤:

将0.305克四(3-巯基丙酸)季戊四醇酯和1.5克分子量为600的聚乙二醇二丙烯酸酯溶解在四氢呋喃中,得到反应物的混合溶液,其中四(3-巯基丙酸)季戊四醇酯的巯基和分子量为600的聚乙二醇二丙烯酸酯的双键的摩尔比为1:2。

再按聚乙二醇二丙烯酸酯中乙氧基/Li摩尔比为20:1向反应物的混合溶液中加入0.143克高氯酸锂,磁力搅拌4小时后,得到混合溶液。

向得到的混合溶液中加入174微升三乙胺,磁力搅拌1分钟后,得到反应混合液,其中反应混合液中的三乙胺与四(3-巯基丙酸)季戊四醇酯的巯基的摩尔比为1:2。搅拌均匀后,将反应混合液浇铸于模具中,先室温干燥8小时,然后在80℃下干燥12小时,待溶剂完全除去后,得到聚合物电解质膜。

实施例8

一种聚合物电解质的高效制备方法,包括以下步骤:

将0.611克四(3-巯基丙酸)季戊四醇酯和1.5克分子量为600的聚乙二醇二丙烯酸酯溶解在四氢呋喃中,得到反应物的混合溶液,其中四(3-巯基丙酸)季戊四醇酯的巯基和分子量为600的聚乙二醇二丙烯酸酯的双键的摩尔比为1:1。

再按聚乙二醇二丙烯酸酯中乙氧基/Li摩尔比为16:1向反应物的混合溶液中加入0.179克高氯酸锂,磁力搅拌4小时后,得到混合溶液。

向得到的混合溶液中加入30微升三乙胺,磁力搅拌1分钟后,得到反应混合液,其中反应混合液中的三乙胺与四(3-巯基丙酸)季戊四醇酯的巯基的摩尔比为1:23。搅拌均匀后,将反应混合液浇铸于模具中,先室温干燥8小时,然后在80℃下干燥12小时,待溶剂完全除去后,得到聚合物电解质膜。

图4为本实施例中制备的聚合物电解质的电导率随温度变化图,可以看出交联网状结构能够降低该聚合物电解质的结晶度,在一定程度上提高电导率,30℃时电导率最高可达1.89×10-5S cm-2

除上述实施例中具体的聚乙二醇二丙烯酸酯种类外,本发明提出聚合物电解质的高效制备方法适用的聚乙二醇二丙烯酸酯还可以是相对分子质量为200、400的聚乙二醇二丙烯酸酯中的任意一种。

除上述实施例中具体的含有巯基末端的反应物种类外,本发明提出的聚合物电解质的高效制备方法适用的含有巯基末端的反应物还可以是三羟甲基丙烷三(3-巯基丙酸酯)以及八巯基多面体低聚倍半硅氧烷中的任意一种。

除上述实施例中具体的金属盐种类外,本发明提出的聚合物电解质的高效制备方法适用的金属盐还可以是双三氟甲烷磺酰亚胺锂、三氟甲磺酸锂、高氯酸钠以及高氯酸钾中的任意一种。

除上述实施例中具体的有机溶剂种类外,本发明提出的聚合物电解质的高效制备方法适用的有机溶剂还可以是丙酮、乙腈中的任意一种。

本发明提出的金属盐助催化的巯基-迈克尔加成反应,该方法使用三乙胺作为催化剂,反应体系包括含有巯基末端的反应物、含有丙烯酸酯末端的反应物、催化剂以及金属盐,通过金属盐对丙烯酸酯的络合作用使所述巯基-迈克尔加成反应显著加速,并通过调节金属盐的种类和用量调控反应速率,该反应还具有较高的转化率。

本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

一种聚合物电解质的制备方法及其应用专利购买费用说明

专利买卖交易资料

Q:办理专利转让的流程及所需资料

A:专利权人变更需要办理著录项目变更手续,有代理机构的,变更手续应当由代理机构办理。

1:专利变更应当使用专利局统一制作的“著录项目变更申报书”提出。

2:按规定缴纳著录项目变更手续费。

3:同时提交相关证明文件原件。

4:专利权转移的,变更后的专利权人委托新专利代理机构的,应当提交变更后的全体专利申请人签字或者盖章的委托书。

Q:专利著录项目变更费用如何缴交

A:(1)直接到国家知识产权局受理大厅收费窗口缴纳,(2)通过代办处缴纳,(3)通过邮局或者银行汇款,更多缴纳方式

Q:专利转让变更,多久能出结果

A:著录项目变更请求书递交后,一般1-2个月左右就会收到通知,国家知识产权局会下达《转让手续合格通知书》。

动态评分

0.0

没有评分数据
没有评价数据