专利转让平台_买专利_卖专利_中国高校专利技术交易-买卖发明专利上知查网

全部分类
全部分类
一种协同提高方钴矿热电材料热电性能和机械性能的方法

一种协同提高方钴矿热电材料热电性能和机械性能的方法

IPC分类号 : C22C12/00I,C22C1/02I,B22D11/06I,C22C1/05I,C22C1/10I,B22F3/14I,H01L35/18I,H01L35/34I

申请号
CN201910611741.6
可选规格

    看了又看

  • 专利类型:
  • 法律状态: 有权
  • 公开号: CN110317971B
  • 公开日: 2019-10-11
  • 主分类号: C22C12/00I
  • 专利权人: 哈尔滨工业大学

专利摘要

专利摘要

一种协同提高方钴矿热电材料热电性能和机械性能的方法,它涉及提高方钴矿热电材料热电性能和机械性能的方法。本发明要解决现有引入纳米粒子形成的纳米复合材料,采用通常的机械混合的方式很难将其均匀分开的问题。制备方法:一、按照化学通式称取Yb块、Co块、Sb颗粒和Si片并混合均匀;二、将混合物在一定温度下熔融,冷却后得到铸锭;三、将铸锭置于底部设有孔的石英管内,然后放入甩带机中,加热铸锭直至熔融,将其喷注在铜辊上,得到薄带;四、将薄带研磨成细粉,将细粉至于石墨模具中,在一定温度及压力下烧结,得到纳米复合热电材料。本发明适用于协同提高方钴矿热电材料热电性能和机械性能的方法。

权利要求

1.一种协同提高方钴矿热电材料热电性能和机械性能的方法,其特征在于它是按以下步骤进行的:

一、按照化学通式为Yb0.3Co4Sb12/xCoSi的化学计量比称取Yb块、Co块、Sb颗粒和Si片,然后混合均匀,得到混合物;其中x=0.05;

二、将混合物置于石墨坩埚内,并密封在真空度为0.1Pa~1Pa的石英管内,将封好的石英管置于高温马弗炉中,以升温速度为100℃/min~150℃/min,将高温马弗炉升温至1100℃~1150℃,并在温度为1100℃~1150℃的条件下,保温3h~5h,然后随炉冷却至室温,得到铸锭;

三、将铸锭置于底部设有一个直径为0.3mm~0.5mm孔的石英管内,然后将装有铸锭的石英管放入甩带机中,利用感应线圈加热铸锭熔融,在喷压力为0.05MPa~0.1MPa的条件下,将熔融的铸锭喷注在转速为40ms-1~50ms-1的铜辊上,冷却,得到薄带;

四、将薄带研磨成粒径为2μm~5μm的细粉,然后将其至于石墨模具中,在温度为720℃~750℃及压力为90MPa~100MPa的条件下,烧结30min~60min,得到Yb0.3Co4Sb12/xCoSi纳米复合热电材料。

2.根据权利要求1所述的一种协同提高方钴矿热电材料热电性能和机械性能的方法,其特征在于步骤一中所述的Yb块纯度为99.9%,步骤一中所述的Co块纯度为99.95%,步骤一中所述的Sb颗粒纯度为99.999%,步骤一中所述的Si片的纯度为99.9999%。

3.根据权利要求1所述的一种协同提高方钴矿热电材料热电性能和机械性能的方法,其特征在于步骤二中以升温速度为120℃/min~150℃/min,将高温马弗炉升温至1150℃。

4.根据权利要求1所述的一种协同提高方钴矿热电材料热电性能和机械性能的方法,其特征在于步骤二中以升温速度为100℃/min~120℃/min,将高温马弗炉升温至1150℃。

5.根据权利要求1所述的一种协同提高方钴矿热电材料热电性能和机械性能的方法,其特征在于步骤二中在温度为1150℃的条件下,保温3h~4h。

6.根据权利要求1所述的一种协同提高方钴矿热电材料热电性能和机械性能的方法,其特征在于步骤四中将薄带研磨成粒径为3μm~5μm的细粉,然后将其至于石墨模具中。

7.根据权利要求1所述的一种协同提高方钴矿热电材料热电性能和机械性能的方法,其特征在于步骤四中在温度为730℃~750℃及压力为95MPa~100MPa的条件下,烧结40min~60min。

8.根据权利要求1所述的一种协同提高方钴矿热电材料热电性能和机械性能的方法,其特征在于步骤四中在温度为720℃~730℃及压力为90MPa~95MPa的条件下,烧结30min~40min。

说明书

技术领域

本发明涉及提高方钴矿热电材料热电性能和机械性能的方法。

背景技术

在能源危机的背景下,寻找新能源技术已成为人们的迫切需求。其中,热电材料由于能够实现热能和电能的直接相互转化而备受关注。热电材料可以利用塞贝克效应实现温差发电,利用帕尔贴效应实现制冷。由于体积小,无噪音,无机械传动部件等特点,热电材料可用于深空探测,制冷以及工业废热回收发电等领域。然而,由于低的能量转换效率,热电器件未能实现广泛应用。热电器件的能量转化效率主要由材料的热电优值来决定。故提高材料的热电优值一直是热电研究领域追求的永恒主题。在中温热电材料中,CoSb3基方钴矿热电材料由于机械性能好,功率因子高,对环境友好等特点一直备受青睐。然而,高的晶格热导率导致低的热电优值。1995年Slack等人提出“声子玻璃-电子晶体”的概念。基于此,可利用填充原子进入CoSb3化合物的二十面体孔洞内,增强声子散射作用,大幅度降低合金的晶格热导率,使其成为最具应用前景的中温热电材料。尽管利用填充原子可在一定程度上明显降低方钴矿的晶格热导率,但晶格热导率仍具有进一步降低的空间。通过引入合适的纳米粒子形成的纳米复合材料不仅可以有效的散射载热声子降低晶格热导率,而且也可以改善材料的机械性能便于加工处理。然而由于纳米粒子具备高的表面能,故采用通常的机械混合的方式很难将其均匀分开。因此,在填充方钴矿中引入均匀分布的纳米粒子对于降低晶格热导率,提高材料的热电性能和机械性能具有重要的研究意义。

发明内容

本发明要解决现有引入纳米粒子形成的纳米复合材料,由于纳米粒子具备高的表面能,故采用通常的机械混合的方式很难将其均匀分开的问题,而提供一种协同提高方钴矿热电材料热电性能和机械性能的方法。

一种协同提高方钴矿热电材料热电性能和机械性能的方法,它是按以下步骤进行的:

一、按照化学通式为Yb0.3Co4Sb12/xCoSi的化学计量比称取Yb块、Co块、Sb颗粒和Si片,然后混合均匀,得到混合物;其中0<x≤0.1;

二、将混合物置于石墨坩埚内,并密封在真空度为0.1Pa~1Pa的石英管内,将封好的石英管置于高温马弗炉中,以升温速度为100℃/min~150℃/min,将高温马弗炉升温至1100℃~1150℃,并在温度为1100℃~1150℃的条件下,保温3h~5h,然后随炉冷却至室温,得到铸锭;

三、将铸锭置于底部设有一个直径为0.3mm~0.5mm孔的石英管内,然后将装有铸锭的石英管放入甩带机中,利用感应线圈加热铸锭熔融,在喷压力为0.05MPa~0.1MPa的条件下,将熔融的铸锭喷注在转速为40ms-1~50ms-1的铜辊上,冷却,得到薄带;

四、将薄带研磨成粒径为2μm~5μm的细粉,然后将其至于石墨模具中,在温度为720℃~750℃及压力为90MPa~100MPa的条件下,烧结30min~60min,得到Yb0.3Co4Sb12/xCoSi纳米复合热电材料。

本发明的有益效果是:

本发明公开了一种协同提高方钴矿热电材料热电性能和机械性能的方法。在经典的Yb0.3Co4Sb12方钴矿中通过熔体旋甩结合热压的方式原位析出多尺度均匀分布的CoSi纳米粒子。一方面,CoSi纳米粒子引入成功的解耦了热和电输运参数,明显提高材料的热电性能,主要包括利用界面势垒过滤少量的低能载流子提高材料的功率因子,当x=0.05时,在873K时功率因子最高可达到61μW cm-1K-2,同时产生的大量界面和晶格错配增强对声子的散射作用进而明显降低晶格热导率,当x=0.05时,晶格热导率在873K降至0.43Wm-1K-1。另一方面,由于纳米粒子的引入使得材料的机械性能得以明显改善,抑制了裂纹的扩展提高材料的硬度,同时断裂韧性也得到明显改善,这对材料的加工过程和实际应用具有重要的意义。

本发明用于一种协同提高方钴矿热电材料热电性能和机械性能的方法。

附图说明

图1为对比实验一制备的Yb0.3Co4Sb12热电材料的电导率随温度变化曲线图;

图2为实施例一制备的Yb0.3Co4Sb12/0.25CoSi纳米复合热电材料的电导率随温度变化曲线图;

图3为实施例二制备的Yb0.3Co4Sb12/0.05CoSi纳米复合热电材料的电导率随温度变化曲线图;

图4为实施例三制备的Yb0.3Co4Sb12/0.1CoSi纳米复合热电材料的电导率随温度变化曲线图;

图5为对比实验一制备的Yb0.3Co4Sb12热电材料的塞贝克系数随温度变化曲线图;

图6为实施例一制备的Yb0.3Co4Sb12/0.25CoSi纳米复合热电材料的塞贝克系数随温度变化曲线图;

图7为实施例二制备的Yb0.3Co4Sb12/0.05CoSi纳米复合热电材料的塞贝克系数随温度变化曲线图;

图8为实施例三制备的Yb0.3Co4Sb12/0.1CoSi纳米复合热电材料的塞贝克系数随温度变化曲线图;

图9为对比实验一制备的Yb0.3Co4Sb12热电材料的功率因子随温度变化曲线图;

图10为实施例一制备的Yb0.3Co4Sb12/0.25CoSi纳米复合热电材料的功率因子随温度变化曲线图;

图11为实施例二制备的Yb0.3Co4Sb12/0.05CoSi纳米复合热电材料的功率因子随温度变化曲线图;

图12为实施例三制备的Yb0.3Co4Sb12/0.1CoSi纳米复合热电材料的功率因子随温度变化曲线图;

图13为总热导率曲线图,■为对比实验一制备的Yb0.3Co4Sb12热电材料,●为实施例一制备的Yb0.3Co4Sb12/0.25CoSi纳米复合热电材料,▲为实施例二制备的Yb0.3Co4Sb12/0.05CoSi纳米复合热电材料;

图14为实施例三制备的Yb0.3Co4Sb12/0.1CoSi纳米复合热电材料的总热导率曲线图;

图15为晶格热导率曲线图,■为对比实验一制备的Yb0.3Co4Sb12热电材料,●为实施例一制备的Yb0.3Co4Sb12/0.25CoSi纳米复合热电材料,▲为实施例二制备的Yb0.3Co4Sb12/0.05CoSi纳米复合热电材料,曲线1为Ba0.08La0.05Yb0.04Co4Sb12热电材料;

图16为实施例三制备的Yb0.3Co4Sb12/0.1CoSi纳米复合热电材料的晶格热导率曲线图;

图17为热电优值曲线图,■为对比实验一制备的Yb0.3Co4Sb12热电材料,●为实施例一制备的Yb0.3Co4Sb12/0.25CoSi纳米复合热电材料,▲为实施例二制备的Yb0.3Co4Sb12/0.05CoSi纳米复合热电材料;

图18为实施例三制备的Yb0.3Co4Sb12/0.1CoSi纳米复合热电材料的热电优值曲线图;

图19为平均热电优值对比图,a为对比实验一制备的Yb0.3Co4Sb12热电材料,b为实施例一制备的Yb0.3Co4Sb12/0.25CoSi纳米复合热电材料,c为实施例二制备的Yb0.3Co4Sb12/0.05CoSi纳米复合热电材料,d为实施例三制备的Yb0.3Co4Sb12/0.1CoSi纳米复合热电材料;

图20为机械性能图,1为硬度,2为断裂韧性,a为对比实验一制备的Yb0.3Co4Sb12热电材料,b为实施例一制备的Yb0.3Co4Sb12/0.25CoSi纳米复合热电材料,c为实施例二制备的Yb0.3Co4Sb12/0.05CoSi纳米复合热电材料,d为实施例三制备的Yb0.3Co4Sb12/0.1CoSi纳米复合热电材料。

具体实施方式

具体实施方式一:本实施方式一种协同提高方钴矿热电材料热电性能和机械性能的方法,它是按以下步骤进行的:

一、按照化学通式为Yb0.3Co4Sb12/xCoSi的化学计量比称取Yb块、Co块、Sb颗粒和Si片,然后混合均匀,得到混合物;其中0<x≤0.1;

二、将混合物置于石墨坩埚内,并密封在真空度为0.1Pa~1Pa的石英管内,将封好的石英管置于高温马弗炉中,以升温速度为100℃/min~150℃/min,将高温马弗炉升温至1100℃~1150℃,并在温度为1100℃~1150℃的条件下,保温3h~5h,然后随炉冷却至室温,得到铸锭;

三、将铸锭置于底部设有一个直径为0.3mm~0.5mm孔的石英管内,然后将装有铸锭的石英管放入甩带机中,利用感应线圈加热铸锭熔融,在喷压力为0.05MPa~0.1MPa的条件下,将熔融的铸锭喷注在转速为40ms-1~50ms-1的铜辊上,冷却,得到薄带;

四、将薄带研磨成粒径为2μm~5μm的细粉,然后将其至于石墨模具中,在温度为720℃~750℃及压力为90MPa~100MPa的条件下,烧结30min~60min,得到Yb0.3Co4Sb12/xCoSi纳米复合热电材料。

本实施方式的有益效果是:本实施方式公开了一种协同提高方钴矿热电材料热电性能和机械性能的方法。在经典的Yb0.3Co4Sb12方钴矿中通过熔体旋甩结合热压的方式原位析出多尺度均匀分布的CoSi纳米粒子。一方面,CoSi纳米粒子引入成功的解耦了热和电输运参数,明显提高材料的热电性能,主要包括利用界面势垒过滤少量的低能载流子提高材料的功率因子,当x=0.05时,在873K时功率因子最高可达到61μW cm-1K-2,同时产生的大量界面和晶格错配增强对声子的散射作用进而明显降低晶格热导率,当x=0.05时,晶格热导率在873K降至0.43Wm-1K-1。另一方面,由于纳米粒子的引入使得材料的机械性能得以明显改善,抑制了裂纹的扩展提高材料的硬度,同时断裂韧性也得到明显改善,这对材料的加工过程和实际应用具有重要的意义。

具体实施方式二:本实施方式与具体实施方式二不同的是:步骤一中所述的Yb块纯度为99.9%,步骤一中所述的Co块纯度为99.95%,步骤一中所述的Sb颗粒纯度为99.999%,步骤一中所述的Si片的纯度为99.9999%。其它与具体实施方式二相同。

具体实施方式三:本实施方式与具体实施方式一或二不同的是:步骤一中0<x≤0.025。其它与具体实施方式一或二相同。

具体实施方式四:本实施方式与具体实施方式一至三之一不同的是:步骤一中0<x≤0.05。其它与具体实施方式一至三相同。

具体实施方式五:本实施方式与具体实施方式一至四之一不同的是:步骤二中以升温速度为120℃/min~150℃/min,将高温马弗炉升温至1150℃。其它与具体实施方式一至四相同。

具体实施方式六:本实施方式与具体实施方式一至五之一不同的是:步骤二中以升温速度为100℃/min~120℃/min,将高温马弗炉升温至1150℃。其它与具体实施方式一至五相同。

具体实施方式七:本实施方式与具体实施方式一至六之一不同的是:步骤二中在温度为1150℃的条件下,保温3h~4h。其它与具体实施方式一至六相同。

具体实施方式八:本实施方式与具体实施方式一至七之一不同的是:步骤四中将薄带研磨成粒径为3μm~5μm的细粉,然后将其至于石墨模具中。其它与具体实施方式一至七相同。

具体实施方式九:本实施方式与具体实施方式一至八之一不同的是:步骤四中在温度为730℃~750℃及压力为95MPa~100MPa的条件下,烧结40min~60min。其它与具体实施方式一至八相同。

具体实施方式十:本实施方式与具体实施方式一至九之一不同的是:步骤四中在温度为720℃~730℃及压力为90MPa~95MPa的条件下,烧结30min~40min。其它与具体实施方式一至九相同。

采用以下实施例验证本发明的有益效果:

实施例一:

一种协同提高方钴矿热电材料热电性能和机械性能的方法,它是按以下步骤进行的:

一、按照化学通式为Yb0.3Co4Sb12/xCoSi的化学计量比称取Yb块、Co块、Sb颗粒和Si片,然后混合均匀,得到混合物;其中x=0.025;

二、将混合物置于石墨坩埚内,并密封在真空度为0.1Pa的石英管内,将封好的石英管置于高温马弗炉中,以升温速度为120℃/min,将高温马弗炉升温至1150℃,并在温度为1150℃的条件下,保温3h,然后随炉冷却至室温,得到铸锭;

三、将铸锭置于底部设有一个直径为0.5mm孔的石英管内,然后将装有铸锭的石英管放入甩带机中,利用感应线圈加热铸锭熔融,在喷压力为0.1MPa的条件下,将熔融的铸锭喷注在转速为50ms-1的铜辊上,冷却,得到薄带;

四、将薄带研磨成粒径为3μm的细粉,然后将其至于石墨模具中,在温度为750℃及压力为100MPa的条件下,烧结60min,得到Yb0.3Co4Sb12/0.25CoSi纳米复合热电材料;

步骤一中所述的Yb块纯度为99.9%,步骤一中所述的Co块纯度为99.95%,步骤一中所述的Sb颗粒纯度为99.999%,步骤一中所述的Si片的纯度为99.9999%。

实施例二:本实施例与实施例一不同的是:步骤一中所述的x=0.05,得到Yb0.3Co4Sb12/0.05CoSi纳米复合热电材料。其它与实施例一相同。

实施例三:本实施例与实施例一不同的是:步骤一中所述的x=0.1,得到Yb0.3Co4Sb12/0.1CoSi纳米复合热电材料。其它与实施例一相同。

对比实验一:本实施例与实施例一不同的是:步骤一中所述的x=0,得到Yb0.3Co4Sb12热电材料。其它与实施例一相同。

图1为对比实验一制备的Yb0.3Co4Sb12热电材料的电导率随温度变化曲线图,图2为实施例一制备的Yb0.3Co4Sb12/0.25CoSi纳米复合热电材料的电导率随温度变化曲线图,图3为实施例二制备的Yb0.3Co4Sb12/0.05CoSi纳米复合热电材料的电导率随温度变化曲线图,图4为实施例三制备的Yb0.3Co4Sb12/0.1CoSi纳米复合热电材料的电导率随温度变化曲线图;

图5为对比实验一制备的Yb0.3Co4Sb12热电材料的塞贝克系数随温度变化曲线图,图6为实施例一制备的Yb0.3Co4Sb12/0.25CoSi纳米复合热电材料的塞贝克系数随温度变化曲线图,图7为实施例二制备的Yb0.3Co4Sb12/0.05CoSi纳米复合热电材料的塞贝克系数随温度变化曲线图,图8为实施例三制备的Yb0.3Co4Sb12/0.1CoSi纳米复合热电材料的塞贝克系数随温度变化曲线图;

图9为对比实验一制备的Yb0.3Co4Sb12热电材料的功率因子随温度变化曲线图,图10为实施例一制备的Yb0.3Co4Sb12/0.25CoSi纳米复合热电材料的功率因子随温度变化曲线图,图11为实施例二制备的Yb0.3Co4Sb12/0.05CoSi纳米复合热电材料的功率因子随温度变化曲线图,图12为实施例三制备的Yb0.3Co4Sb12/0.1CoSi纳米复合热电材料的功率因子随温度变化曲线图;

由图可知,CoSi纳米粒子引入后电导率没有明显的变化,然而塞贝克系数得到适度的提高,从而功率因子在300K~873K温度区间均明显高于基体样品。其中,含0.05CoSi样品的功率因子最高,相对于基体,在873K时的功率因子从54μW cm-1K-2提高到61μW cm-1K-2。这主要归因于CoSi纳米粒子和基体之间形成的界面势垒通过能量过滤效应有效的过滤了低能载流子,使得塞贝克系数得以提高。

图13为总热导率曲线图,■为对比实验一制备的Yb0.3Co4Sb12热电材料,●为实施例一制备的Yb0.3Co4Sb12/0.25CoSi纳米复合热电材料,▲为实施例二制备的Yb0.3Co4Sb12/0.05CoSi纳米复合热电材料;图14为实施例三制备的Yb0.3Co4Sb12/0.1CoSi纳米复合热电材料的总热导率曲线图;

图15为晶格热导率曲线图,■为对比实验一制备的Yb0.3Co4Sb12热电材料,●为实施例一制备的Yb0.3Co4Sb12/0.25CoSi纳米复合热电材料,▲为实施例二制备的Yb0.3Co4Sb12/0.05CoSi纳米复合热电材料,曲线1为Ba0.08La0.05Yb0.04Co4Sb12热电材料;图16为实施例三制备的Yb0.3Co4Sb12/0.1CoSi纳米复合热电材料的晶格热导率曲线图;

由图可知,CoSi纳米粒子引入后材料的总热导率和晶格热导率在整个测试温度区间均有较大幅度降低,其中,当x=0.05时,晶格热导率在873K降至0.43Wm-1K-1,达到史迅等人报道的多填充Ba0.08La0.05Yb0.04Co4Sb12的类似效果,接近方钴矿材料的晶格热导率理论极限,由此证明了CoSi纳米粒子的引入对晶格热导率的降低具有重要的作用。注:Ba0.08La0.05Yb0.04Co4Sb12的制备方法依据Ref.Shi X,et al.,J.Am.Chem.Soc.,133(2011)7837-7846。

图17为热电优值曲线图,■为对比实验一制备的Yb0.3Co4Sb12热电材料,●为实施例一制备的Yb0.3Co4Sb12/0.25CoSi纳米复合热电材料,▲为实施例二制备的Yb0.3Co4Sb12/0.05CoSi纳米复合热电材料;图18为实施例三制备的Yb0.3Co4Sb12/0.1CoSi纳米复合热电材料的热电优值曲线图;

图19为平均热电优值对比图,a为对比实验一制备的Yb0.3Co4Sb12热电材料,b为实施例一制备的Yb0.3Co4Sb12/0.25CoSi纳米复合热电材料,c为实施例二制备的Yb0.3Co4Sb12/0.05CoSi纳米复合热电材料,d为实施例三制备的Yb0.3Co4Sb12/0.1CoSi纳米复合热电材料。

当x=0.05时,热电优值在873K达到最大值为1.5。由Yb0.3Co4Sb12/xCoSi(x=0,0.025,0.05,0.1)样品在300K~873K温度区间的平均热电优值可知,Yb0.3Co4Sb12/xCoSi样品也具备最高的平均热电优值。

图20为机械性能图,1为硬度,2为断裂韧性,a为对比实验一制备的Yb0.3Co4Sb12热电材料,b为实施例一制备的Yb0.3Co4Sb12/0.25CoSi纳米复合热电材料,c为实施例二制备的Yb0.3Co4Sb12/0.05CoSi纳米复合热电材料,d为实施例三制备的Yb0.3Co4Sb12/0.1CoSi纳米复合热电材料。由图可知,CoSi纳米粒子引入后明显抑制了裂纹的扩展提高材料的硬度,同时断裂韧性也得到明显改善。

一种协同提高方钴矿热电材料热电性能和机械性能的方法专利购买费用说明

专利买卖交易资料

Q:办理专利转让的流程及所需资料

A:专利权人变更需要办理著录项目变更手续,有代理机构的,变更手续应当由代理机构办理。

1:专利变更应当使用专利局统一制作的“著录项目变更申报书”提出。

2:按规定缴纳著录项目变更手续费。

3:同时提交相关证明文件原件。

4:专利权转移的,变更后的专利权人委托新专利代理机构的,应当提交变更后的全体专利申请人签字或者盖章的委托书。

Q:专利著录项目变更费用如何缴交

A:(1)直接到国家知识产权局受理大厅收费窗口缴纳,(2)通过代办处缴纳,(3)通过邮局或者银行汇款,更多缴纳方式

Q:专利转让变更,多久能出结果

A:著录项目变更请求书递交后,一般1-2个月左右就会收到通知,国家知识产权局会下达《转让手续合格通知书》。

动态评分

0.0

没有评分数据
没有评价数据