专利摘要
专利摘要
本发明公开了一种适用于被动拖曳线列阵声呐的复杂弱目标检测和跟踪方法,以克服传统算法对低信噪比复杂目标检测和跟踪效果差的技术问题。本发明通过常规波束形成处理接收信号得到各分辨单元的空间谱量测,然后通过拟合量测数据统计特性的方法设计似然函数模型以计算粒子的权值实现粒子滤波算法对目标的跟踪;另外,通过积累多次快拍的粒子权值来判断目标的生成和消失。本发明的实施,有效解决了传统算法均衡量测数据损失信息,无法适用于低信噪比目标场景的跟踪和目标数目固定的问题,从而实现被动声呐复杂弱目标的有效跟踪。
权利要求
1.一种适用于被动拖曳线列阵声呐的复杂弱目标检测和跟踪方法,其特征在于,包括下列步骤:
步骤1:基于被动声呐系统的阵元接收信号y(n),通过CBF算法计算当前时刻的量测值 其中B为观测区域的分辨单元数目;
步骤2:对每个目标进行状态采样、粒子权值计算:
计算不同粒子在与目标对应的分区的状态采样: 其中 表示第j个粒子在当前时刻k的第l个分区的状态采样, 表示k时刻目标l的状态,j=1,…,Np,l=1,...,L,Np表示粒子数目,L表示目标数目;
再根据向量测值zk和 计算分区l的粒子权值
从而得到Np个粒子在时刻k的L个分区的状态采样和权值;
步骤3:根据同一分区的粒子权值 对各分区的粒子状态进行重采样;
步骤4:检测消失的目标并删除;
步骤5:基于 计算各粒子的综合权值 其中 j=1,…,Np;
步骤6:由 得到目标估计状态,其中 δ(·)是狄拉克函数;
步骤7:基于当前时刻的量测值判断新目标起始。
2.如权利要求1所述的方法,其特征在于,步骤4具体为:
401:对于持续超过Nf个时刻的目标,计算该目标Nf个时刻的粒子权值和∑;
402:若∑小于权值门限Λ,则判断当前目标消失,并删除当前目标到当前时刻为止Nf个时刻的状态估计,且对应时刻目标数减1;若∑大于或等于权值门限Λ,则目标持续时刻数加1。
3.如权利要求1或2所述的方法,其特征在于,所述步骤7具体为:
S701:对各量测值 选取量测值 左右各r个分辨单元的量测值组成一个长度为r的数据窗 b=1,...,B;
S702:对数据窗内的量测值从小到大排序得到 并根据公式 设置门限值β,其中α为预设值;
S703:将 与门限值β进行比较,若 则令 否则令
S704:基于步骤S701-S703,得到新的一组量测值
S705:将 中超过起始门限Λs的量测值与目标估计状态进行对比:若与目标估计状态的距离小于判断门限ηt,则不作为新目标起始;否则,基于当前量测值所在分辨单元起始新目标。
4.如权利要求1所述的方法,其特征在于,步骤3中,对任意分区的重采样具体为:
初始化权值阶梯函数:c1=0;
基于粒子权值 计算Np个权值阶梯函数
根据公式 计算粒子参数uj,其中j=1,...,Np,u1为 的均匀分布随机数;
对每个粒子参数uj,从Np个权值阶梯函数 中,查找第一个满足uj≤cp的粒子标号p,将粒子p分区l的状态采样 和粒子权值 覆盖到粒子j的分区l,其中p∈{1,…,Np}。
5.如权利要求1所述的方法,其特征在于,步骤1具体为:
101:基于当前接收信号y(n)计算空间相关矩阵R的估计值: 其中N表示信号的快拍数,(·)H表示共轭转置;
102:由各阵元接收信号的加权和wHy(n)得到被动声呐系统的输出信号yo(n),其中w表示权值向量;
将 赋值给空间相关矩阵R,根据CBF算法计算输出信号yo(n)的功率值P作为量测值,即功率值P=wHRw;
以接收信号的导向向量a(θ)作为各接收信号的权值向量得到不同入射角θ的功率幅值:P(θ)=aH(θ)Ra(θ);
基于入射角的功率幅值得到各分辨单元b在当前时刻的量测值 其中分辨单元标识符b=1,…,B。
说明书
技术领域
本发明属于水下目标探测领域,具体涉及声呐阵列信号处理和多目标检测和跟踪。
背景技术
被动声呐系统不主动发射信号,所接收的所有源信号均是目标自身噪声或其反射的环境噪声。上述特征使得被动声呐具有很好的隐蔽性,并被广泛研究和应用于军事和科研等领域。
对于被动声呐系统,目标发出或反射的噪声被多听声器组成的阵列接收,再通过阵列信号的波束形成算法处理生成反映目标当前入射角度的幅值信息也就是空间谱。然后根据这些信息实现对目标的纯方位(bearing-only tracking)向跟踪。由于入射信号是来自目标的噪声,虽然为被动声呐提供了隐蔽性,但信号的信噪比相比主动声呐较低。并且由于接收信号是来自目标噪声,情况较为复杂,可能随时“生成”或“消失”。这些因素均使得被动声呐目标的检测和跟踪变得困难。文献“Multi-target tracking using multiple passive bearings-only asynchronous sensors,IEEE Trans.Aerosp.Electron.Syst.,vol.44,pp.1151–1160,2008”公开了一种用均衡后的点迹量测数据配合卡尔曼滤波算法实现对两个目标的纯方位向跟踪,但均衡处理在抑制噪声的同时损失了目标信息,使得上述跟踪方式在目标信噪比较低时跟踪效果差,并且目标的起始时刻、位置和终止时刻是已知的,不能用于随机“生成”和“消失”的复杂目标场景。
发明内容
本发明的目的是,提出一种能充分利用量测信息,适应低信噪比条件,并且能处理目标随机生成和消失的检测和跟踪方法,解决现有被动声呐目标检测跟踪算法量测信息损失,不能有效跟踪低信噪比复杂目标的问题。
本发明的解决方案是:通过常规波束形成(Conventional Beamforming,CBF)算法处理被动声呐阵列接收到的信号,得到目标的方位历程信息也就是空间谱量测,然后通过拟合量测的统计特性设计合适的似然函数模型,根据似然函数模型计算粒子权值,实现粒子滤波算法对目标的跟踪,再通过多次快拍数据粒子的权值门限来判断目标随机“起始”和“终止”。本发明能有效解决了因被动声呐系统接收信号信噪比低、目标随机变化使得目标的检测和跟踪困难的问题,从而实现了对低信噪比复杂目标的检测和跟踪。
为了阐述方便,首先对说明书中将涉及到的术语(分辨单元、纯方位向量测值、多目标粒子)解释如下:
分辨单元:观测区域的一小部分,是对观测区域的划分。每个分辨单元都有对应的量测值,此量测值一般为从信号采样或经过计算得到的某种幅值,用于表示目标是否处于该单元。本说明书中的分辨单元是对观测区域的角度划分。
纯方位向量测值:反映目标在其所处位置产生的信号的入射方向的量测值。本发明中,纯方位向量测值的计算为:根据分辨单元的角度划分的设定,采用CBF波束形成算法对接收阵列信号进行处理、计算得到各分辨单元的空间谱量测值,即为纯方位向量测值。
多目标粒子:对于多目标粒子滤波跟踪算法,粒子需要反映多个目标的状态,因此对粒子进行分区:1个粒子包含多个分区,具体分区数目等同于目标数目,分区内保存某一个目标的状态采样,分区与目标一一对应。分区也称为“子粒子”。
本发明的一种适用于拖拽被动声呐的多目标粒子滤波检测和跟踪方法,具体包括步骤:
步骤一:被动声呐系统的阵列信号与参数的初始化。
被动声呐系统采用均匀线性阵列,其阵列系统的接收信号可表示为:
其中 表示阵元m的接收信号,m=1,…,M,M表示阵元数目。
将产生信号的目标的入射角记为θ,针对多目标情况,用θl表示目标l的入射角,目标数记为L(目标数不固定)。纯方位跟踪的目标状态记为一个二元向量 其中 表示目标的方位向速度,X=[x1,...,xL]表示多目标状态。向量z=[z1,z2,...,zB]表示量测值,其中zb表示某个分辨单元b的量测值,B表示观测区域分辨单元数。粒子总数记为Np;用K表示总时刻数。
步骤二:通过CBF算法计算量测数据。
考虑到实际情况,均匀线阵系统的接收信号一般写成如下形式:
y(n)=As(n)+v(n)(1)
其中,向量s(n)=[s1(n),s2(n),...,sL(n)]'表示L个目标信号的复包络,v(n)表示加性零均值白噪声。矩阵A是接收信号的导向矩阵:
其中,a(θ1)表示第1个目标产生的信号的导向向量;τm表示第m个元的接收信号相比第一个接收信号的时间延迟。
阵列系统输出信号为各阵元接收信号的加权和:
yo(n)=wHy(n)(3)
其中,w是权值向量,(·)H表示共轭转置。
CBF算法计算输出信号的功率值作为量测值,输出信号功率计算如下:
其中,R是空间相关矩阵。然后以导向向量作为各信号的权值向量得到各角度的功率幅值:
P(θ)=aH(θ)Ra(θ)(5)
在实际计算过程中,空间矩阵R一般通过接收的离散阵列信号(即y(n))估计得到:
其中,N表示离散信号的快拍数,即在公式(4)(5)的计算处理时,将 的值赋值给空间相关矩阵R。
由此,观测区域分辨单元b(b=1,...,B)的量测值(纯方位量测值)可以写作:zb=z(θb)=a(θb)HRa(θb),θb表示分辨单元b的入射角;
步骤三:对每个目标进行状态采样、粒子权值计算。
当前时刻设为k,分别对每个目标进行新粒子的采样,以第一个粒子为例,通过目标运动方程对粒子状态进行采样:
其中, 表示k时刻目标l的状态, 表示第1个粒子k时刻第l个分区(l=1,...,L)的状态采样。
分别对L个分区进行状态采样,得到第一个粒子
重复上述关于第一个粒子的状态采样处理,得到Np个粒子 其中各粒子分别为
基于步骤二得到当前时刻的量测值 则粒子分区l的粒子权值可以根据下式计算:
因此得到Np个粒子在L个分区的粒子权值
步骤四:粒子分区重采样。
对得到的Np个粒子的同一分区,根据对应的粒子权值进行重采样;
步骤五:检测消失的目标并删除;
步骤六:计算粒子的综合权值。
计算用于表示整个粒子的质量的综合权值:
其中,j=1,...,Np,为了简化计算,可直接令 得到各粒子的综合权值;
步骤七:估计目标状态。
步骤三到步骤七得到了一组带权值的粒子,用这些粒子和综合权值来估计目标状态:
其中,δ(·)是狄拉克函数,Xk
即将 作为目标估计状态。;
步骤八:基于当前时刻的量测值 判断新目标起始。
所述步骤五的具体步骤为:
1)对于持续超过Nf个时刻的目标,计算该目标Nf个时刻的粒子权值和∑。
2)设置一个权值门限Λ,若Σ<Λ则判断目标消失,删除该目标到当前时刻为止Nf个时刻的状态估计,且对应时刻目标数减1。
3)若Σ≥Λ,则目标持续时刻数加1。
所述步骤八的具体步骤为:
(1)用 表示分辨单元在当前时刻k的量测值,对B个量测值为 首先抑制量测值里较为明显的噪声:对某个分辨单元量测值 选取该量测值左右各r个分辨单元的量测值组成一个长度为r的数据窗
(2)对数据窗内的量测值从小到大排序得到 选取其中数值较大的一半量测值计算一个门限值β:
其中,α是用于调节门限值的参数。
(3)将 与门限值β按以下准则比较:
(4)重复上述3个步骤,从 到 滑窗处理量测值得到新的一组量测值
(5)设置一个很低的起始门限Λs,甚至Λs可以直接取0,将 中超过起始门限Λs的量测值与之前估计的目标状态进行对比:若与任何一个已估计目标状态(目标估计状态)的距离小于预设判断门限ηt,则不作为新目标起始;否则,转步骤(6);
(6)新的目标起始:对应时刻目标数加1,在该量测值所在分辨单元周围按高斯分布采样粒子,标记该目标在k+1时刻产生。
综上所述,由于采用了上述技术方案,本发明的有益效果是:本发明利用CBF波束形成算法处理接收信号得到空间谱量测,然后拟合量测的统计特性设计似然函数模型,根据选取的似然函数模型计算粒子权值实现粒子滤波算法对目标的跟踪;然后配合多个快拍粒子权值判断目标生成和消失的方法解决了被动声呐系统复杂弱目标的检测和跟踪问题。本发明建立的目标检测和跟踪的方法能适用于被动声呐系统低信噪比和目标生成消失的复杂场景。求解过程简单,跟踪性能好。
附图说明
图1是本发明实施流程框图。
图2是本发明实施例中三个目标在接收信号信噪比-23dB时的跟踪航迹图。
图3是本发明实施例中接收信号信噪比-23dB,50次蒙特卡罗目标数曲线图。
图4是本发明实施例中不同接收信号信噪比下与传统跟踪对比的检测率曲线图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面结合实施方式和附图,对本发明作进一步地详细描述。
实施例
为了验证本发明的技术效果,采用仿真实验的方法对本发明的检测和跟踪方法进行验证,参见图1,具体实施过程如下:
S1:初始化系统参数。
以0.5°分辨率划分观测区域(-90°,90°),计算可得分辨单元数为361;阵元数M=40;粒子数目Np=400;总时刻数:K=50;
S2:根据式(1)和(2)初始化当前时刻的阵列接收信号y(n);
S3:根据式(3)~(6)计算当前时刻的量测值:
S4:对每个目标进行新粒子状态采样、粒子权值计算:
S401:对于粒子j,用式(8)对第l个分区进行状态采样;
S402:l=l+1,重复步骤S401;
j=j+1,重复步骤S401和S402得到Np个粒子的L个分区的状态采样 和粒子权值
S5:分区内重采样:对不同多目标粒子的同一分区根据权值进行重采样,以分区l为例
S501:初始化权值阶梯函数:c1=0;
S502:计算所有粒子j=1,...,Np的权值阶梯函数,
S503:生成一个均匀分布随机数:
S504:对于粒子j,计算参数 设置另一个标号p从1到Np搜索,直到uj≤cp。
S505:将粒子p分区l的状态和权值覆盖到粒子j的分区l。
S506:j=j+1,重复步骤S504和S505完成Np个粒子的处理。
S507:l=l+1,重复上述所有步骤,完成对每个分区的重采样。
S6:对每个持续时间超过Nf=3个时刻的目标,计算到当前时刻为止的3个时刻所有粒子该分区的权值和Σ,与权值门限Λ=576对比,若Σ<Λ则删除到当前时刻位置3个时刻该目标分区的信息并更新对应时刻的目标数L:对应时刻目标数减1;若Σ≥Λ,则该目标持续时刻数加1。
S7:经过步骤S5和S6,每个多目标粒子经过了重组,且保留的分区对应目标都是通过了权值门限的。用式(9)计算每个多目标粒子的综合权值:
S8:用式(10)对目标状态进行估计,得到目标估计状态。
S9:处理量测值得到 并起始新目标,更新目标数L:
S901:对B个分辨单元的各量测值 选取量测值 左右各r个分辨单元的量测值组成一个长度为r的数据窗
S902:对数据窗内的量测值从小到大排序得到 并根据公式(11)计算门限值β;
S903:将 与门限值β根据公式(12)进行比较,得到
S904:重复步骤S901-S903,从 到 滑窗处理量测值得到新的一组量测值
S905:将 中超过始门限Λs的量测值与已估计的目标估计状态进行对比:若与任何一个目标估计状态的距离小于判断门限ηt(即与已有目标重复),则不作为新目标起始,;否则,转步骤S906;
S906:新的目标起始:对应时刻目标数加1,在该量测值所在分辨单元周围按高斯分布采样粒子,标记该目标在k+1时刻产生。
基于本发明的上述实施过程得到的三个目标在接收信号信噪比-23dB时的跟踪航迹图如图2所示。图3是本实施例中接收信号信噪比-23dB,50次蒙特卡罗目标数曲线图。图4是本发明的实施例(PF-TBD)中不同接收信号信噪比下与传统跟踪对比的检测率曲线图。由图可知,本发明跟踪性能好,可以应用于水声目标跟踪等领域。
以上所述,仅为本发明的具体实施方式,本说明书中所公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换;所公开的所有特征、或所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以任何方式组合。
一种适用于被动拖曳线列阵声呐的复杂弱目标检测和跟踪方法专利购买费用说明
Q:办理专利转让的流程及所需资料
A:专利权人变更需要办理著录项目变更手续,有代理机构的,变更手续应当由代理机构办理。
1:专利变更应当使用专利局统一制作的“著录项目变更申报书”提出。
2:按规定缴纳著录项目变更手续费。
3:同时提交相关证明文件原件。
4:专利权转移的,变更后的专利权人委托新专利代理机构的,应当提交变更后的全体专利申请人签字或者盖章的委托书。
Q:专利著录项目变更费用如何缴交
A:(1)直接到国家知识产权局受理大厅收费窗口缴纳,(2)通过代办处缴纳,(3)通过邮局或者银行汇款,更多缴纳方式
Q:专利转让变更,多久能出结果
A:著录项目变更请求书递交后,一般1-2个月左右就会收到通知,国家知识产权局会下达《转让手续合格通知书》。
动态评分
0.0