专利转让平台_买专利_卖专利_中国高校专利技术交易-买卖发明专利上知查网

全部分类
全部分类
一种面向工况的混合动力汽车控制参数标定方法

一种面向工况的混合动力汽车控制参数标定方法

IPC分类号 : B60W40/00,B60W50/00,G06F17/00

申请号
CN201910025948.5
可选规格

    看了又看

  • 专利类型:
  • 法律状态: 有权
  • 公开号: CN109747654B
  • 公开日: 2019-05-14
  • 主分类号: B60W40/00
  • 专利权人: 吉林大学

专利摘要

专利摘要

本发明公开了一种面向工况的混合动力汽车控制参数标定方法,涉及混合动力汽车技术领域。方法主要包括建立工况样本、基于粒子群算法对各独立工况下的控制参数优化、基于相关性的工况特征指标筛选、多元线性回归分析、新工况的最佳控制参数标定等五个步骤。充分考虑工况特征与最佳控制参数之间的关系,建立最佳控制参数与工况特征指标之间的多元线性回归模型,对于不同工况都能迅速标定控制参数,一方面有助于理解工况对最佳控制参数的影响,一方面便于标定人员快速确定最佳控制参数,缩短标定周期。

权利要求

1.一种面向工况的混合动力汽车控制参数标定方法,其特征在于,包括以下内容:

第一,建立工况样本,具体包括以下步骤:

①首先选定若干个标准循环工况,然后提取每个标准循环工况的所有动力学片段,将每一动力学片段看作一个独立的工况,所述动力学片段的划分方法为以工况起始点作为第一个动力学片段的起始点,以起始点后车速经历大于零后的第一个零车速点作为第一个动力学片段的结束点,以上一动力学片段的结束点作为下一动力学片段的起始点,以此类推,若最后一个动力学片段起始点后车速始终为零,则舍弃该段,所有循环工况的动力学片段数之和即为样本数,计为N;

②计算各独立工况的20个特征指标C1,C2,C3......C20,所述20个特征指标依次指停车比例、停车次数、加速比例、减速比例、巡航比例、平均加速度、最大加速度、加速度标准差、平均减速度、最大减速度、减速度标准差、平均行驶车速、车速标准差、车速均方根、最高车速、0-20km/h车速比例、20-40km/h车速比例、40-60km/h车速比例、60-80km/h车速比例、80-100km/h车速比例,每个特征指标Cx为一元素数为N的向量,x为下角标,代表1,2,3......20;

第二,各独立工况的控制参数优化,具体包括以下步骤:

①确定要优化的控制参数P;

②使用粒子群算法在每一独立工况下对P进行优化,以燃油消耗量最小为适应度函数,以电池SOC平衡为约束条件,以P作为粒子位置,设定迭代次数K作为优化终止条件,最终得到各独立工况下使燃油消耗量最小的最佳控制参数Pb,Pb为一元素为N的向量;

第三,基于相关性的工况特征指标筛选,具体包括以下步骤:

①使用线性回归分析中的相关性公式计算各特征指标之间的相关系数 如式(1)所示,各特征指标与最佳控制参数之间的相关系数 如式(2)所示:

式中下角标x、y均表示特征指标代号,为1,2,3......20;

②筛选出与最佳控制参数相关性较高的工况特征指标,设置阈值R1,保留所有 的特征指标,其余的剔除;

③依据各工况特征指标之间的相关性继续缩减特征指标数量,设置阈值R2,在步骤②中保留的工况特征指标中,寻找所有 的特征指标对Cx、Cy,视为重复的工况特征指标,保留与最佳控制参数相关性较高的,即 与 中的较大值对应的工况特征指标,剔除较小值对应的工况特征指标;

经过以上所述筛选步骤后保留下来的工况特征指标个数记为M,M≤20;

第四,多元线性回归分析,具体包括以下步骤:

①设置模型的显著性水平α,建立最佳控制参数Pb与M个工况特征指标之间的多元线性回归模型,模型如式(3)所示:

Pb=β01·C12·C2+......+βM·CM+ε (3)

式中,β0为常数项,β1、β2……βM为回归系数,ε为随机误差;

②残差分析,根据所述多元线性回归模型得到各样本的残差r1、r2……rN及对应的置信区间rint1、rint2……rintN,若某样本的置信区间不包含零点,则认为该样本数据异常,将其剔除,然后重新建立式(3)所示多元线性回归模型;

③对模型开展T检验,设进入该步骤时的工况特征指标个数为Me,先更新Me,若存在未通过T检验的回归系数βw,则剔除下标号最小的βw对应的Cw并进入步骤④,此时剩余工况指标个数为Mo,Mo=Me-1;若不存在未通过T检验的回归系数,则剩余工况指标个数为Me,进入步骤⑤;

④保持显著性水平α不变,建立最佳控制参数Pb与Mo个工况特征指标之间的多元线性回归模型并进行F检验,若F检验通过,则进入步骤③;若F检验未通过,则还原最新被剔除的一个工况特征指标并,此时剩余工况指标个数为Me,进入步骤⑤;

⑤以最终保留的Me个工况特征指标与Pb之间的多元线性回归模型作为最终模型,如式(4)所示:

第五,对于要标定的新工况,计算所述最终保留的Me个工况特征指标,并将其代入式(4),得到该工况对应的最佳控制参数。

说明书

技术领域

本发明属于混合动力汽车技术领域,特别涉及一种混合动力汽车控制参数标定方法。

背景技术

节能是汽车混合动力化的主要目标之一,混合动力汽车由于涉及两个及以上的动力源,耦合关系复杂,能量管理控制策略(下称控制策略)及其中的关键控制参数对油耗有着重要影响,因此衍生出一系列以最小油耗为目标的控制参数优化方法,如动态规划算法、最小等效燃油消耗法、遗传算法、粒子群算法等。其中动态规划算法可以达到某特定工况下的经济性最优,但是需要进行复杂的控制规则提取才能应用到实际控制中,规则提取的精确程度也影响着实际油耗;最小等效燃油消耗法以瞬时燃油经济性最优为目标,无法达到整个工况的经济性最优;遗传算法、粒子群算法等智能优化算法既可以应用于全局最优,又可以应用于瞬时最优,且是对控制参数的直接优化,可以得到最佳控制参数的具体数值。

以上对控制参数的优化均基于特定工况,即优化后得到的参数并不能使汽车在所有行驶工况下都有最佳的燃油经济性,工况不同,控制参数需要作出相应调整。对于标定人员来说,每个工况下都对控制参数进行优化会花费大量时间,延长开发周期;此外,汽车实际行驶工况与离线优化时使用的工况往往存在较大差别且经常变化,而控制器中的控制参数不能在线标定,导致混合动力汽车的燃油经济性不能充分发挥,目前常见的方法是先在大量工况下对控制参数进行离线优化,得到每个工况对应的最佳控制参数,然后进行工况识别和预测,再通过查表的方式在线标定控制参数。该方法的有效范围依赖于离线优化时的工况数量,当汽车行驶工况不在表格之中时,该方法失效,而增加离线工况数量会大大增加时间成本。因此,寻找工况特征与最佳控制参数之间的关系对于提高控制策略的离线标定效率和在线标定有效性具有重要意义。

中国专利公开号为CN104071161A,公开日为2014-10-01,公开了一种插电式混合动力汽车工况识别及能量管控的方法,首先使用支持向量机识别工况,将工况划分为若干特定种类,然后在不同种类工况下使用不同的模糊方法控制发动机扭矩,从而优化燃油经济性,该方法仅将工况分为有限的若干类,无法详细体现工况特征,模糊方法模拟人的判断,相当于根据经验制定好了工况特征与控制参数之间的关系,优化效果有限;中国专利公开号为CN102717797A,公开日为2012-10-10,公开了一种混合动力车辆能量管理方法及能量管理系统,该方法以燃油消耗、发动机排放、电池SOC为代价函数,以电机输出转矩为标定量,使用随机动态规划方法解决能量管理问题,与本专利优化方法不同,且并未探究最佳控制参数与工况特征的关系。

发明内容

为克服现有技术存在的不足,本发明提供一种面向工况的混合动力汽车控制参数标定方法,探究混合动力汽车行驶工况与使燃油经济性最佳的控制参数之间的关系及规律。在不同工况下,混合动力汽车达到最佳经济性的控制参数不同,说明最佳控制参数与工况的某些特征之间必然存在线性或非线性关系,而线性关系更容易被总结和使用。以动力学片段作为独立工况来扩充工况样本,用粒子群算法分别计算出各工况下的最佳控制参数,然后使用统计学方法分析与最佳控制参数相关性最高的工况特征指标以及这些指标与最佳控制参数之间的线性关系,并建立多元线性回归模型,根据回归模型,在得到新工况的相关特征指标后,即可计算在该工况下使汽车燃油经济性最佳的控制参数,完成控制参数的标定。

为实现上述目的,根据本发明实施例的一种面向工况的混合动力汽车控制参数标定方法,包括以下内容:

第一,建立工况样本,具体包括以下步骤:

①首先选定若干个标准循环循环工况,然后提取每个标准循环工况的所有动力学片段,将每一动力学片段看作一个独立的工况,所述动力学片段的划分方法为以工况起始点作为第一个动力学片段的起始点,以起始点后车速经历大于零后的第一个零车速点作为第一个动力学片段的结束点,以上一动力学片段的结束点作为下一动力学片段的起始点,以此类推,若最后一个动力学片段起始点后车速始终为零,则舍弃该段,所有循环工况的动力学片段数之和即为样本数,计为N;

②计算各独立工况的20个特征指标C1,C2,C3......C20,所述20个特征指标依次指停车比例、停车次数、加速比例、减速比例、巡航比例、平均加速度、最大加速度、加速度标准差、平均减速度、最大减速度、减速度标准差、平均行驶车速、车速标准差、车速均方根、最高车速、0-20km/h车速比例、20-40km/h车速比例、40-60km/h车速比例、60-80km/h车速比例、80-100km/h车速比例,每个特征指标Cx为一元素数为N的向量,x为下角标,代表1,2,3......20;

第二,各独立工况的控制参数优化,具体包括以下步骤:

①确定要优化的控制参数P;

②使用粒子群算法在每一独立工况下对P进行优化,以燃油消耗量最小为适应度函数,以电池SOC平衡为约束条件,以P作为粒子位置,设定迭代次数K作为优化终止条件,最终得到各独立工况下使燃油消耗量最小的最佳控制参数Pb,Pb为一元素为N的向量;

第三,基于相关性的工况特征指标筛选,具体包括以下步骤:

①使用线性回归分析中的相关性公式计算各特征指标之间的相关系数 如式(1)所示,各特征指标与最佳控制参数之间的相关系数 如式(2)所示:

式中下角标x、y均表示特征指标代号,为1,2,3......20;

②筛选出与最佳控制参数相关性较高的工况特征指标,设置阈值R1,保留所有 的特征指标,其余的剔除;

③依据各工况特征指标之间的相关性继续缩减特征指标数量,设置阈值R2,在步骤②中保留的工况特征指标中,寻找所有 的特征指标对Cx、Cy,视为重复的工况特征指标,保留与最佳控制参数相关性较高的,即 与 中的较大值对应的工况特征指标,剔除较小值对应的工况特征指标;

经过以上所述筛选步骤后保留下来的工况特征指标个数记为M,M≤20;

第四,多元线性回归分析,具体包括以下步骤:

①设置模型的显著性水平α,建立最佳控制参数Pb与M个工况特征指标之间的多元线性回归模型,模型如式(3)所示:

Pb=β01·C12·C2+......+βM·CM+ε (3)

式中,β0为常数项,β1、β2……βM为回归系数,ε为随机误差;

②残差分析,根据所述多元线性回归模型得到各样本的残差r1、r2……rN及对应的置信区间rint1、rint2……rintN,若某样本的置信区间不包含零点,则认为该样本数据异常,将其剔除,然后重新建立式(3)所示多元线性回归模型;

③对模型开展T检验,设进入该步骤时的工况特征指标个数为Me,先更新Me,若存在未通过T检验的回归系数βw,则剔除下标号最小的βw对应的Cw并进入步骤④,此时剩余工况指标个数为Mo,Mo=Me-1;若不存在未通过T检验的回归系数,则剩余工况指标个数为Me,进入步骤⑤;

④保持显著性水平α不变,建立最佳控制参数Pb与Mo个工况特征指标之间的多元线性回归模型并进行F检验,若F检验通过,则进入步骤③;若F检验未通过,则还原最新被剔除的一个工况特征指标并,此时剩余工况指标个数为Me,进入步骤⑤;

⑤以最终保留的Me个工况特征指标与Pb之间的多元线性回归模型作为最终模型,如式(4)所示:

第五,对于要标定的新工况,计算所述最终保留的Me个工况特征指标,并将其代入式(4),得到该工况对应的最佳控制参数。

本发明与现有技术相比,充分考虑工况特征与最佳控制参数之间的关系,对于不同工况都能迅速标定控制参数,优化汽车的燃油经济性。用动力学片段划分工况,将每一动力学片段看作一独立工况,扩充了样本数量,提高后续使用统计学方法时的精度;使用粒子群算法优化每个独立工况下的控制参数,优化效果较好且可直接得到最佳控制参数的具体数值;对工况特征指标与最佳控制参数以及各指标之间的相关性分析可以筛选出对最佳控制参数影响最大的指标,减少后续多元线性回归模型的自变量个数,简化计算;对建立的多元线性回归模型开展T检测有助于进一步缩减工况特征指标个数,提高模型精度。本发明一方面有助于理解工况对最佳控制参数的影响,一方面便于标定人员快速确定最佳控制参数,缩短标定周期。

附图说明

本发明的上述和/或附加的方面和优点结合下面附图对实施例的描述中将变得明显和容易理解,其中:

图1位根据本发明实施例的总体流程图;

图2为根据本发明实施例的按动力学片段划分工况示意图;

图3为根据本发明实施例的工况特征指标矩阵示意图;

图4为根据本发明实施例的工况特征指标与最佳控制参数及工况特征指标之间相关系数表格示意图;

图5为根据本发明实施例的多元线性回归分析流程图。

具体实施方式

下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。

由于20个工况特征指标的计算方法,粒子群优化算法,多元线性回归中的残差分析、F检验、T检验等为通用方法,因此在此不再赘述。

本发明所述的一种面向工况的混合动力汽车控制参数标定方法,包括以下内容:

第一,建立工况样本。由于本发明所述的一种面向工况的混合动力汽车控制参数标定方法涉及统计学中的多元线性回归分析,必须保证样本量充足,因此以划分动力学片段的方法扩充样本容量,工况样本的建立具体包括以下步骤:

①首先选定若干个标准循环工况,所述标准循环工况指法规规定的、汽车行业通用的典型行驶工况,如NEDC工况,具体的标准循环工况及个数由标定人员根据需要自行确定。然后提取每个标准循环工况的所有动力学片段,将每一动力学片段看作一个独立的工况,所述动力学片段的划分方法为以工况起始点作为第一个动力学片段的起始点,以起始点后车速经历大于零后的第一个零车速点作为第一个动力学片段的结束点,以上一动力学片段的结束点作为下一动力学片段的起始点,以此类推,若最后一个动力学片段起始点后车速始终为零,则舍弃该段,所有循环工况的动力学片段数之和即为样本数,计为N。

参考附图2,以NEDC工况为例,按照所述动力学片段划分方法将NEDC工况划分为13个独立工况。

②计算各独立工况的20个特征指标C1,C2,C3......C20。所述20个特征指标依次指停车比例、停车次数、加速比例、减速比例、巡航比例、平均加速度、最大加速度、加速度标准差、平均减速度、最大减速度、减速度标准差、平均行驶车速、车速标准差、车速均方根、最高车速、0-20km/h车速比例、20-40km/h车速比例、40-60km/h车速比例、60-80km/h车速比例、80-100km/h车速比例,每个特征指标Cx为一元素数为N的向量,x为下角标,代表1,2,3......20。

参考附图3,每个独立工况都有所述20个特征指标,亦即每个特征指标对应N个值,所有独立工况的特征指标用一个20行N列的矩阵表示,矩阵的第x列表示N个独立工况的第x个特征指标的值。

第二,各独立工况的控制参数优化,具体包括以下步骤:

①确定要优化的控制参数P。本发明所述的一种面向工况的混合动力汽车控制参数标定方法具有通用性,可以标定不同控制参数,因此需要标定的控制参数的由标定人员自行选取。

②使用粒子群算法在每一独立工况下对P进行优化。以燃油消耗量最小为适应度函数,以电池SOC平衡为约束条件,以P作为粒子位置,设定迭代次数K作为优化终止条件,由粒子群算法的优化原理可知,当设定的K足够大时,总能得到各独立工况下使燃油消耗量最小的最佳控制参数Pb,Pb为一元素为N的向量,即每一独立工况对应一个最佳的控制参数。

第三,基于相关性的工况特征指标筛选。所述的20个工况特征指标并不是全部与最佳控制参数呈显著的相关性,需要筛选出相关性较高的指标,剔除相关性不高的指标;此外,某些工况特征指标之间可能存在着程度较高的相关性,这意味着可以用一个指标来代替其余与其相关性较高的指标。工况特征指标的筛选能够减少指标的个数,保留与最佳控制参数相关性较高的工况特征指标,简化后续的多元线性回归模型及其可信度,筛选过程具体包括以下步骤:

①使用线性回归分析中的相关性公式计算各特征指标之间的相关系数 如式(1)所示,各特征指标与最佳控制参数之间的相关系数 如式(2)所示:

式中下角标x、y均表示特征指标代号,为1,2,3......20;

②筛选出与最佳控制参数相关性较高的工况特征指标,设置阈值R1,保留所有 的特征指标,其余的剔除;

③依据各工况特征指标之间的相关性继续缩减特征指标数量,设置阈值R2,在步骤②中保留的工况特征指标中,寻找所有 的特征指标对Cx、Cy,视为重复的工况特征指标,保留与最佳控制参数相关性较高的,即 与 中的较大值对应的工况特征指标,剔除较小值对应的工况特征指标;

经过以上所述筛选步骤后保留下来的工况特征指标个数记为M,M≤20。

参考附图4,单元格中数据是根据式(1)、式(2)计算得到的相关系数,如第2行第1列 表示工况特征指标C1与最佳控制参数Pb之间的相关系数。根据式(1)、式(2)可知,变量与自身的相关系数为1,故表格对角线元素均为1;对角线上方的元素与其关于对角线对称的元素相等,如 故对角线上方元素值不再计算。

第四,多元线性回归分析。以数学模型的形式表达以上步骤确定的与最佳控制参数相关性较高的M个工况特征指标与最佳控制参数之间的多元线性回归关系,分析模型的合理性并做出相应调整。参考图5,多元线性回归分析具体包括以下步骤:

①设置模型的显著性水平α,建立最佳控制参数Pb与M个工况特征指标之间的多元线性回归模型,如式(3)所示:

Pb=β01·C12·C2+......+βM·CM+ε (3)

式中,β0为常数项,β1、β2……βM为回归系数,ε为随机误差。

②残差分析,对式(3)所示模型进行残差分析的目的是找到数据异常的样本,删掉异常样本后,模型精度更高。对于每一个样本,均可得到其残差及对应的置信区间,根据各样本的残差r1、r2……rN及对应的置信区间rint1、rint2……rintN,根据多元线性回归相关理论,若某样本的置信区间不包含零点,则认为该样本数据异常,将其剔除,然后重新建立式(3)所示多元线性回归模型。

③对模型开展T检验,T检验的目的是找到式(3)中对Pb解释能力较弱的工况特征指标并剔除,剔除一个指标后,多元线性回归模型变化,再次进行T检验的结果会变化,故每次只剔除一个工况特征指标。

设进入该步骤时的工况特征指标个数为Me,先更新Me,Me≤M。若存在未通过T检验的回归系数βw,则其对应的工况特征指标Cw对Pb解释能力较弱,剔除下标号最小的Cw并进入步骤④,此时剩余工况指标个数为Mo,Mo=Me-1;若不存在未通过T检验的回归系数,则剩余工况指标个数为Me,进入步骤⑤。

④保持显著性水平α不变,建立最佳控制参数Pb与Mo个工况特征指标之间的多元线性回归模型并进行F检验,若F检验通过,则进入步骤③;若F检验未通过,则还原最新被剔除的一个工况特征指标,此时剩余工况指标个数为Me,进入步骤⑤。

F检验是验证所建立多元线性回归模型中最佳控制参数与各工况特征指标的线性关系在整体上是否显著成立,若不通过,则该模型不能使用,故每剔除一个工况特征指标就要进行一次F检验。

⑤以最终保留的Me个工况特征指标与Pb之间的多元线性回归模型作为最终模型,如式(4)所示:

第五,对于要标定的新工况,计算所述最终保留的Me个工况特征指标,并将其代入式(4),得到该工况对应的最佳控制参数。

一种面向工况的混合动力汽车控制参数标定方法专利购买费用说明

专利买卖交易资料

Q:办理专利转让的流程及所需资料

A:专利权人变更需要办理著录项目变更手续,有代理机构的,变更手续应当由代理机构办理。

1:专利变更应当使用专利局统一制作的“著录项目变更申报书”提出。

2:按规定缴纳著录项目变更手续费。

3:同时提交相关证明文件原件。

4:专利权转移的,变更后的专利权人委托新专利代理机构的,应当提交变更后的全体专利申请人签字或者盖章的委托书。

Q:专利著录项目变更费用如何缴交

A:(1)直接到国家知识产权局受理大厅收费窗口缴纳,(2)通过代办处缴纳,(3)通过邮局或者银行汇款,更多缴纳方式

Q:专利转让变更,多久能出结果

A:著录项目变更请求书递交后,一般1-2个月左右就会收到通知,国家知识产权局会下达《转让手续合格通知书》。

动态评分

0.0

没有评分数据
没有评价数据