专利摘要
本发明公开了一种无金属负载型生物炭脱氧催化剂及其催化油脂类化合物制备液体燃料的方法,所述生物炭催化剂是由有机材料在惰性气体氛围下热解碳化制得的。本发明生物炭脱氧催化剂制备方法操作简单,可以实现农业或城市固体废物、碳水化合物等有机材料的资源化利用;本发明还公开了采用所述生物炭脱氧催化剂催化油脂类化合物制备高品质液体燃料的方法,该方法以油脂类化合物为原料,以生物炭脱氧催化剂为催化剂,在惰性气体氛围下进行催化提质,收集液体产物即为高品质液体燃料,实现废弃资源化再利用。
权利要求
1.一种采用无金属负载型生物炭脱氧催化剂催化油脂类化合物制备液体燃料的方法,其特征在于以所述的生物炭脱氧催化剂为催化剂,油脂类化合物在惰性气体氛围下进行催化提质,收集液体产物即为液体燃料,所述的生物炭脱氧催化剂为有机材料在300-750℃温度条件下不添加金属来源物直接热解碳化后所得产物;
所述有机材料为农业固体废物、城市固体废物、碳水化合物中的至少一种;其中,所述农业固体废物选自木质素纤维素、水稻秸秆、麦秸秆、棉花杆、玉米秸秆、甘蔗渣、微藻中的一种或任意组合;所述城市固体废物选自废弃酚醛树脂、废弃聚氨酯、废弃对苯二甲酸二甲酯、废弃聚丙烯、废弃聚苯乙烯、废纸中的一种或任意组合;所述碳水化合物选自纤维素、淀粉、木质素中的一种或任意组合。
2.根据权利要求1所述的方法,其特征在于所述的生物炭脱氧催化剂是由有机材料在惰性气体氛围热解碳化制得的。
3.根据权利要求2所述的方法,其特征在于碳化温度为550~700℃。
4.根据权利要求2所述的方法,其特征在于碳化时间为0.01~24小时。
5.根据权利要求4所述的方法,其特征在于所述碳化时间为1~4小时。
6.根据权利要求2所述的方法,所述的惰性气体选自氮气、氦气、氖气、氩气、氪气、氙气、氡气中的一种或任意组合。
7.根据权利要求1所述的方法,其特征在于所述油脂类化合物选自酸化油、过期食品油、豆油、葵花籽油、蓖麻油、棕榈油、小桐子油、微藻油、废弃动物油、皂脚、废弃白土油、餐饮废弃油中的一种或任意组合。
8.根据权利要求1所述的方法,其特征在于所述油脂类化合物的质量空速为0.1~20 h
9.根据权利要求8所述的方法,其特征在于所述油脂类化合物的质量空速为0.5~20 h
10.根据权利要求9所述的方法,其特征在于所述油脂类化合物的质量空速为1~10 h
11.根据权利要求1所述的方法,其特征在于所述催化提质的温度为300℃~800℃。
12.根据权利要求11所述的方法,其特征在于所述催化提质的温度为350℃~700℃。
13.根据权利要求12所述的方法,其特征在于所述催化提质的温度为500℃~650℃。
说明书
技术领域
本发明属于生物质能源转化技术领域,涉及一种无金属负载型生物炭脱氧催化剂及其催化油脂类化合物制备液体燃料的方法。
背景技术
以石油、煤炭为主的一次能源正日益枯竭,人们对可再生的、洁净能源的需求越来越迫切。而生物质能源是利用包括农作物、树木和其他植物及其残体等在内的可再生或循环的有机物质进行生物基产品、生物燃料生产的产业。此外,废弃蛋白、城市有机废弃物、有机垃圾等废弃物大量被遗弃,未得到有效利用,造成极大的资源浪费和环境污染。生物质资源是有机碳的唯一可持续来源,也是唯一可以转化为液体燃料的可再生资源。由生物质等有机材料出发制备液体燃料、化学品和碳基材料也变得越来越重要。
油脂作为重要的可再生生物质资源之一,已受到各国的重视。将油脂能源化利用不仅可以减少对化石燃料的依赖,还可以降低对环境的污染,有效促进国民经济的可持续发展。油脂类化合物难以作为燃料直接使用,需要进行进一步提质。将甘油三酯催化裂解是制备液体燃料的有效方法。中国发明专利(CN105536860B)公开了一种Ni2P/Zr-MCM-41催化剂,可以很好的催化麻风树油的加氢脱氧。中国发明专利(CN108246322A)公开了一种CoNiP/SiO2催化剂,该催化剂催化生物油脂及其衍生物如长链脂肪酸制备生物燃料。中国发明专利(CN 101531920 B)利用碱土金属或碱金属的氧化物、氢氧化物等作为催化剂催化油脂裂解反应,裂解产物的分子量分布较宽,部分原料发生无规热解反应,进一步生成低碳烃类,使得收率降低。中国发明专利(CN 105175205 B)利用分子筛作为催化剂催化裂解甘油三酯制备芳烃化合物。近期,申请人的相关专利(CN 109621936 A)报道利用直接热解碳化法制备CaO/生物炭催化剂可以有效催化裂解油脂脱氧制备高品质生物燃料。现有技术中均采用金属负载型的催化剂催化油脂脱氧制备液体燃料,但目前尚未有无负载金属的生物炭催化剂催化油脂类化合物提质制备低含氧量液体燃料的文献和专利被报道。在申请人的研究成果的基础上,申请人通过进一步的研究发现,对热解碳化条件如升温速率、碳化温度和碳化时间等因素系统调控下,有机材料直接热解碳化制备得到的生物炭可以直接催化裂解油脂脱氧至低含氧量液体燃料,展现了很好的催化脱氧效果和催化稳定性。
发明内容
本发明的目的是提供一种制备工艺简单且高催化活性和稳定性的无负载金属生物炭脱氧催化剂,该催化剂在常压条件下能催化油脂类化合物发生裂解脱氧反应,将含氧化合物转化为碳氢烃类、醛酮类等化合物,可以有效提高能源的使用效率和燃烧性能。
本发明的目的是通过以下技术方案实现的:
一种无金属负载型生物炭脱氧催化剂,所述的生物炭脱氧催化剂为有机材料在300-750℃温度条件下不添加金属来源物直接热解碳化后所得产物。
所述金属来源物为金属盐或其其他可接受的形式,如金属盐水溶液、金属氧化物、金属单质等,在这里,可以理解为各种形式的含有金属的物质。
所述的生物炭脱氧催化剂是由有机材料在惰性气体氛围热解碳化制得的。
所述有机材料为农业或城市固体废物、碳水化合物等中的一种或任意组合。
所述农业固体废物选自木质素纤维素、水稻秸秆、麦秸秆、棉花杆、玉米秸秆、甘蔗渣、微藻等中的一种或任意组合。所述城市固体废物选自废弃酚醛树脂、废弃聚氨酯、废弃对苯二甲酸二甲酯、废弃聚丙烯、废弃聚苯乙烯、废纸等中的一种或任意组合。所述碳水化合物选自纤维素、淀粉、木质素等中的一种或任意组合。
所述热解碳化温度优选为550~700 ºC。
所述热解碳化时间为0.01~24小时,优选为1~4小时。
所述的惰性气体选自氮气、氦气、氖气、氩气、氪气、氙气、氡气中的一种或任意组合。
本发明的另一个目的是提供所述的生物炭脱氧催化剂催化油脂类化合物制备高品质液体燃料的方法,该方法以所述的生物炭脱氧催化剂为催化剂,油脂类化合物在惰性气体氛围下进行催化提质,收集液体产物即为液体燃料。。
优选的,该方法包括:将生物炭脱氧催化剂装填在固定床反应器中形成催化剂床层,将油脂类化合物通入固定床反应器,在惰性气体氛围下由催化剂催化提质,收集液体产物即高品质液体燃料。
所述油脂类化合物选自酸化油、过期食品油、地沟油、豆油、葵花籽油、蓖麻油、棕榈油、小桐子油、微藻油、皂脚、废弃动物油、废弃白土油、餐饮废弃油中的一种或任意组合。
所述油脂类化合物的质量空速为0.1~20 h
所述催化提质的温度为300 ºC~800 ºC,优选为350 ºC~700 ºC,进一步优选为500 ºC~650 ºC。
所述的惰性气体选自氮气、氦气、氖气、氩气、氪气、氙气、氡气中的一种或任意组合。
本发明的有益效果如下:
1)、本发明通过有机材料热解碳化获得生物炭脱氧催化剂,实现农业或城市固体废物、碳水化合物等有机材料的资源化利用。
2)、本发明无金属负载型生物炭脱氧催化剂制备方法操作简单,摒弃了传统生物炭催化剂需负载金属等改性的缺点。更重要的是,有机材料在温度300-750℃热解制备的生物炭脱氧催化剂可催化油脂类化合物制备含氧量低于4%的低含量液体燃料;更进一步地,当将热解温度控制在550-750℃时,可进一步将制备的液体燃料的含氧量控制在2%左右,可得到品质更高的液体燃料,展现了催化剂良好的催化活性。
3)、本发明采用无金属负载型生物炭脱氧催化剂催化油脂类化合物脱氧制备高品质液体燃料,具有显著的催化效果,是绿色的生产工艺;原料油脂类化合物是可再生资源,实现废弃资源化再利用。
4)、本发明所制备的无金属负载型催化剂具有优异的催化稳定性,由于本申请制备的催化剂无需负载金属,因此克服了金属负载型催化剂由于金属易流失的特性导致重复性较差的技术难点。
附图说明
图1 为生物炭脱氧催化剂制备装置的示意图。
图2为生物炭脱氧催化剂催化裂解油脂类化合物的装置的示意图。
图3为水稻秸秆生物炭脱氧催化剂的扫描电镜(SEM)图。
图4为菜籽油直接热解和生物炭脱氧催化提质后的产物气相-质谱联用色谱对比图。
图5为菜籽油直接热解和生物炭脱氧催化剂催化提质后的产物分布图。
具体实施方式
为了使本领域的技术人员更好的理解本发明的技术方案,下面结合具体实施例对本发明进一步详细说明。本领域技术人员可以在本发明的教导下适当改进工艺参数实现。特别需要指出的是,所有类似的替换和改动对本领域技术人员来说是显而易见的,他们都被视为包括在本发明内。
如图1所示,生物炭脱氧催化剂制备装置包括石英管反应器1(直径25mm,长度450mm),在石英管反应器1中装填石英棉2作为支承,所述石英管反应器1安装在温控炉4中,通过插到温控炉4的热电偶监测反应器的温度。采用N2作为载气,通过气体流量计6控制载气流量。有机材料从进样器3开口处进样,与载气一起流至热解界面,热解碳化,在石英棉上生成生物炭脱氧催化剂。
如图2所示,生物炭催化剂催化裂解油脂类化合物的装置包括石英管反应器 1(直径10mm,长度250mm),在石英管反应器 1中装填生物炭脱氧催化剂,通过石英棉2支撑形成催化剂床层7;将石英管反应器1安装在温控炉4内,通过插到温控炉填充床表面的热电偶监测反应器的温度。通过液体进样泵8将油脂类化合物泵入反应器中,采用N2作为载气,通过气体流量计6控制载气流量;液体产物从反应器流至冷凝器5,通过甲醇溶解后通过GC-MS检测产物分布。
GC-MS检测条件:安捷伦7890B-5977B,HP-5 MS色谱柱,40℃初温,以10℃/min升温330 °C,并保持5min。生物油氧含量分析通过元素分析仪(Vario MACRO cube, Elemnet)检测分析。
实施例1
以载气为氮气,热解碳化条件为700 °C保留2小时。C2水稻秸秆生物炭的扫描电镜(SEM)图见图3。水稻秸秆生物炭脱氧催化剂C2催化菜籽油热解提质后得到生物油的组分分布GC-MS见图4,化学组分分化见图5,与菜籽油直接热解相比,生物油中芳香烃类化合物含量显著提高,含量约为70%以上,酸脂含量约为5%以下,进一步说明生物炭脱氧催化剂具有显著的脱氧效果,可以提高生物油品质。
测试不同有机材料制备的生物炭脱氧催化剂对油脂类化合物提质的催化效果。催化剂测试条件为:以菜籽油为油脂类化合物原料,0.4g生物炭脱氧催化剂,菜籽油WHSV=2h
表1不同有机材料700℃条件下制得的生物炭脱氧催化剂的催化效果
实施例 2
以水稻秸秆为有机材料,载气为氮气,在不同温度下保留2小时进行热解碳化。
测试不同温度制备出的生物炭脱氧催化剂对油脂类化合物提质的催化效果。催化剂测试条件为:以菜籽油为油脂类化合物原料,0.4g生物炭脱氧催化剂,菜籽油WHSV=2 h
表2不同制备温度对生物炭脱氧催化剂的催化效果影响
实施例3
以水稻为有机材料,载气为氮气,在温度700°C下保留不同时间进行热解。
测试不同热解时间下制备出的生物炭脱氧催化剂对油脂类化合物提质的催化效果。催化剂测试条件为:以菜籽油为油脂类化合物原料;0.4g生物炭脱氧催化剂,菜籽油WHSV=2 h
表3 碳化时间对生物炭脱氧催化剂的催化效果影响
实施例4
以麦秸秆为有机材料,采用不同载气,碳化温度为700°C,碳化时间为2小时。
测试不同载气制备出的水稻秸秆基生物炭脱氧催化剂对油脂类化合物提质的催化效果。催化剂测试条件为:以菜籽油为油脂类化合物原料,0.4g生物炭脱氧催化剂,菜籽油WHSV=2 h
表4 载气对CaO-生物炭脱氧催化剂的催化效果影响
实施例5
测试生物碳脱氧催化剂C2对不同油脂类化合物的催化提质效果。催化剂测试条件为:0.4g生物炭脱氧催化剂,菜籽油WHSV=2 h
表5 生物碳脱氧催化剂对不同油脂类化合物的催化效果影响
实施例6
以水稻秸秆基生物碳脱氧催化剂C2为催化剂,测试不同催化提质温度对催化效果的影响。催化剂测试条件为:菜籽油为油脂类化合物原料,菜籽油WHSV=2 h
表6 不同催化提质温度对催化效果的影响
实施例7
以生物碳脱氧催化剂C2为催化剂,测试菜籽油不同用量对催化效果的影响。催化剂测试条件为:菜籽油为油脂类化合物原料,0.4g生物炭脱氧催化剂,反应温度为600°C,载气为氮气。表7表明不同菜籽油用量对催化剂的脱氧效率有一定影响,通过综合考虑生物油的产率和生物油的含氧量,适宜的菜籽油用量(WHSV)在1~10h
表7 菜籽油不同用量对催化效果的影响
实施例8
以生物碳脱氧催化剂C2为催化剂,测试无负载金属生物炭催化剂的稳定性。催化剂测试条件为:菜籽油为油脂类化合物原料,0.4g生物炭脱氧催化剂,反应温度为600°C,载气为氮气,WHSV=2.0 h
表8 生物炭催化剂循环次数对催化效果的影响
一种无金属负载型生物炭脱氧催化剂及其催化油脂类化合物制备液体燃料的方法专利购买费用说明
Q:办理专利转让的流程及所需资料
A:专利权人变更需要办理著录项目变更手续,有代理机构的,变更手续应当由代理机构办理。
1:专利变更应当使用专利局统一制作的“著录项目变更申报书”提出。
2:按规定缴纳著录项目变更手续费。
3:同时提交相关证明文件原件。
4:专利权转移的,变更后的专利权人委托新专利代理机构的,应当提交变更后的全体专利申请人签字或者盖章的委托书。
Q:专利著录项目变更费用如何缴交
A:(1)直接到国家知识产权局受理大厅收费窗口缴纳,(2)通过代办处缴纳,(3)通过邮局或者银行汇款,更多缴纳方式
Q:专利转让变更,多久能出结果
A:著录项目变更请求书递交后,一般1-2个月左右就会收到通知,国家知识产权局会下达《转让手续合格通知书》。
动态评分
0.0