专利摘要
专利摘要
本发明提供了一种基于模糊变结构的柴油发动机电控调速及测试方法,本发明针对柴油机的电控调速系统算法进行了优化设计。对柴油机的非线性对象动力模型和执行器建模,采用模糊变结构对柴油机的喷油系统进行控制。然后利用Lyapunov函数推导不连续控制条件,证明系统在不确定干扰下具有自适应调节稳定性的能力。最后对柴油发动机调速系统进行Matlab/Simulink仿真实验。本发明能够很大程度上提高柴油机电控调速系统在不确定干扰下对柴油机转速进行精确的控制,在启动、怠速、突增突减工况等各类不确定干扰背景下均有良好的效果,使其能满足柴油发动机在实际工作过程中达到良好的控制效果。
权利要求
1.一种基于模糊变结构的柴油发动机电控调速方法,其特征在于,该方法具体包括如下步骤:
步骤(1)建立柴油发动机调速器的非线性模型,
步骤(2)对发动机执行器建模;
步骤(3)模糊滑模控制器的设计,考虑到柴油发动机的一类多输入-多输出系统,设计其控制律的状态方程为:
其中:控制律输入u∈R,
f(x)是已知上界的非连续控制函数,|f(x)|≤f
步骤(4)确定控制律;输出位置的目标值为x
其中:λ是待定的滑动平面系数,r为输出期望值;
先设计等效控制律u
当系统处在动态滑模时,即S=0,存在一个等效的二阶的动态系统:
因此滑动面系数λ的确定应使上式具有左半平面的根,以确保是稳定的控制系统;
步骤(5)用模糊控制代替等效控制改进设计;采用自适应模糊控制逼近等效控制,用具有参数调节的模糊控制律
模糊控制器的输出为:
其中:C
推导规则参数矢量C
用矢量形式表示为:
其中:
设存在一个最优参数矢量
其中:
利用所设计的模糊滑模控制律,设计两条模糊规则确定最终的模糊滑模控制律,以减缓抖振影响:
规则1:
规则2:
其中:ZO为S=0,NZ为S≠0,输入S定义5个模糊集合负大NB、负小NS、零E、正小PS、正大PB。
2.根据权利要求1所述的一种基于模糊变结构的柴油发动机电控调速方法,其特征在于:所述的建立柴油发动机调速器的非线性模型,具体如下:对柴油发动机动力学模型建模;发动机的运动方程为:
其中:ω为柴油机的曲轴角速度,J为柴油机转化至曲轴处的转动惯量,M
当偏离平衡工况产生微小波动时,发动机在稳定状态时的输出力矩、阻力矩和曲轴角速度均发生偏移,ΔM
其中:J
带入发动机的运动方程得到:
其中:ω
3.根据权利要求1所述的一种基于模糊变结构的柴油发动机电控调速方法,其特征在于:所述的对发动机执行器建模,具体如下:输入信号为电压u,设定的执行线圈电流i;输出信号为柴油机齿条位移x
其中,Δx
4.根据权利要求1所述的一种基于模糊变结构的柴油发动机电控调速方法的测试方法,其特征在于:根据所设计的等效控制力矩
对于模糊控制律
其中:
对V求导得:
选择自适应律
对于不连续控制律u
选取不连续控制律:
则
说明书
技术领域
本发明属于自动控制技术领域,具体涉及一种基于模糊变结构的柴油发动机电控调速及测试方法。
背景技术
柴油发动机多应用在船舶、重工和发电机组等大型工业级器械中,其特点具有输出扭矩大,热效率高,故障少等优点。但随着柴油机的广泛应用,对其性能要求越来越高,以往对柴油机进行简单的近线性化处理,采用传统PID控制模型已经完全不能满足生产和生活要求,负载扰动,摩擦扰动等更加加剧了柴油机模型的复杂性和不确定性。本发明针对柴油机的电控调速系统算法进行了优化设计,对柴油机的非线性对象进行建模,采用模糊滑模变结构对柴油机的喷油系统进行控制。滑模变结构多应用于非线性对象,具有鲁棒性强、快速响应、对参数变化及其扰动不灵敏,无需系统在线辨识,物理实现简单等优点。但是该方法的缺点在于当状态轨迹到达滑模面后,难以严格的沿着滑面向着平衡点滑动,而是在滑模面两侧来回穿越,从而产生抖振,对系统的稳定性产生了极大的危害。为此本文将自适应模糊控制应用于柴油发动机调速中,用自适应模糊滑模控制逼近滑模控制中的滑模面进行等效控制,以解决由于不确定性及干扰的存在而不能准确确定等效控制的问题。并且利用Lyapunov函数推导不连续控制条件,以保证闭环系统能在滑动平面领域内能趋于稳定状态,证明系统在不确定干扰下具有自适应调节稳定性的能力。然后根据滑模控制的原理,用两条模糊规则构成的模糊控制器的平滑控制量,以减弱由于不连续控制所引起的抖振。最后对柴油发动机调速系统进行Matlab/Simulink仿真,发动机在各种怠速和增减负载工况下的具有很强的抗干扰和自适应能力。
发明内容
针对现有技术所存在的上述技术问题,本发明提供了一种基于模糊变结构的柴油发动机电控调速及测试方法,能够提高电控调速系统在变负载状态下的鲁棒性,以达到对柴油发动机电控调速系统的精确控制。
一种基于模糊变结构的柴油发动机电控调速方法,该方法具体包括如下步骤:
步骤(1)建立柴油发动机调速器的非线性模型,对柴油发动机动力学模型建模;发动机的运动方程为:
其中:ω为柴油机的曲轴角速度,J为柴油机转化至曲轴处的转动惯量,Md为柴油机的输出扭矩,Mc为柴油机的阻力矩;
当偏离平衡工况产生微小波动时,发动机在稳定状态时的输出力矩、阻力矩和曲轴角速度均发生偏移,ΔMd、ΔMc、Δω为发动机的输出力矩偏移量、阻力矩偏移量和曲轴角速度偏移量,发动机的输出力矩偏移量ΔMd、油泵上的油门开度z、曲轴角速度偏移量Δω之间的关系式为:ΔMd=f(z,Δω);另一方面,阻力矩偏移量ΔMc、负荷L、曲轴角速度偏移量Δω之间的关系式为:ΔMc=g(Δω,L),所以得到:
其中:Jc为输出力矩转动惯量,JL为阻力矩转动惯量;
带入发动机的运动方程得到:
其中:ωe为额定角速度,ze为柴油机齿条的额定行程,Le为额定条件下的负荷系数,令 Fa为自稳定系数;
步骤(2)对发动机执行器建模,输入信号为电压u,设定的执行线圈电流i;输出信号为柴油机齿条位移x1,滑阀位移x2;动力活塞下油压P为中间变量;考虑在额定工况平衡位子附近的运动情况,并忽略油液质量及压缩影响,其运动规律可由下述电流方程、滑阀运动方程、流量方程所描述:
其中,Δx1为柴油机齿条位移偏移量,Δx2为滑阀位移偏移量,Δp为动力活塞下油压偏移量,K1、K2、K3分别为执行器机构反馈弹簧和定心弹簧的弹性系数以及油液流力系数;M为电磁阀运动件等效质量;Cr、Cf分别是为节流阻尼系数和电磁力系数;Kq、Kc、Ce分别为流量增益系数,电磁阀流量-压力系数和工作漏油流量系数;SA为动力活塞横截面积,Δpc为油压;
步骤(3)模糊滑模控制器的设计,考虑到柴油发动机的一类多输入-多输出系统,设计其控制律的状态方程为:
其中:控制律输入u∈R,
f(x)是已知上界的非连续控制函数,|f(x)|≤fmax;g(x)是已知下界的增益函数,0≤g(x)min≤g(x);d为有界干扰,|d|≤dmax;通常由执行器物理参数本身不确定性,即结构不确定性,包括弹簧变形、温度变化、元器件磨损等渐变因素的不确定干扰,这些都导致了结构的不确定性,即输出力矩和阻力矩的转动惯量不能精确获知,从而导致了函数f(x)及g(x)具有不确定性,很难精确获知;因此,在系统存在不确定性和干扰的情况下,首先利用滑模控制器确定一个控制律u;
步骤(4)确定控制律;输出位置的目标值为xd(t)则误差及误差变化率表示为 定义混合误差e=r-x
其中:λ是待定的滑动平面系数,r为输出期望值;
先设计等效控制律ueq以确保系统的状态保持在滑动平面上,则此时系统中产生的模态滑模运动,只依赖与滑动平面方程S=0,不依赖原系统的内部参数及外部干扰;令 则得到等效控制律ueq;代入上式得到系统的等效控制律:
当系统处在动态滑模时,即S=0,存在一个等效的二阶的动态系统:
因此滑动面系数λ的确定应使上式具有左半平面的根,以确保是稳定的控制系统;
步骤(5)用模糊控制代替等效控制改进设计;由于函数f(x)和g(x)具有不确定性,因此难以产生精确的等效控制力矩,为此,采用自适应模糊控制逼近等效控制,用具有参数调节的模糊控制律 代替等效控制律ueq;根据滑模控制原理,其中控制律由两项组成,一项是模糊等效控制律 该项的作用是使系统的状态保持在滑动模式上;另一项是不连续控制uN,该项的作用是使系统状态进入滑动模式,因此,所设计的新的模糊滑模控制律为:
首先构造自适应模糊控制器,推导模糊控制自适应律,以逼近等效控制,然后推导不连续控制律uN,以确保整个模糊滑模控制系统的稳定性,最后改进滑模控制律,以简化抖振现象;
模糊规则的结论为固定常数的模型逼近等效控制,模糊规则的一般形式Rl:
模糊控制器的输出为:
其中:Cl是可调参数矢量, 是高斯型隶属函数;
推导规则参数矢量Cl的自适应调整律;首先建立误差动态方程:
用矢量形式表示为:
其中:
设存在一个最优参数矢量 使得逼近误差 最小,则
其中: 为期望控制律, 为期望最优参数矢量;
利用所设计的模糊滑模控制律,设计两条模糊规则确定最终的模糊滑模控制律,以减缓抖振影响:
规则1:
规则2:
其中:ZO为S=0,NZ为S≠0,输入S定义5个模糊集合负大NB、负小NS、零E、正小PS、正大PB。
一种基于模糊变结构的柴油发动机电控调速方法的测试方法,根据所设计的等效控制力矩 和不连续控制项uN分别选取Lyapunov函数V,对函数V进行求导等到 证明了控制器能迫使系统进入滑动模式,并保证了闭环系统的稳定性;根据以下算式证明了所设计的滑模控制器保证了闭环系统的稳定性;对于模糊控制律
其中: γ是正的待定常数;
对V求导得:
选择自适应律 又由于不连续控制uN与Sg(x)同号,所以:
对于不连续控制律uN:
选取不连续控制律:
则 显然所设计的不连续控制律uN也确保了滑模控制系统的稳定性;
本发明具有以下有益技术效果:本发明能够很大程度上提高柴油机电控调速系统在不确定干扰下对柴油机转速进行精确的控制,在启动、怠速、突增突减工况等各类不确定干扰背景下均有良好的效果,使其能满足柴油发动机在实际工作过程中达到良好的控制效果。
附图说明
图1为本发明柴油发动机调速系统算法原理图。
图2为模糊控制输入量s与隶属度关系图。
图3为柴油发动机在启动后直接进入怠速控制工况时由0/r·min到1000/r·min的各方法响应曲线图。
图4为柴油发动机高速高转矩(转矩由154.3N·m)进入怠速控制工况时由1800/r·min到1000/r·min的各方法响应曲线图。
图5为柴油发动机突减负载工况(转矩由129.3N·m减至74.2N·m),突增负载工况(转矩由74.2N·m增至129.3N·m)状态时在1300/r·min的各方法响应曲线图。
具体实施方式
如图1所示,一种基于模糊变结构的柴油发动机电控调速方法,包括如下步骤:
(1)利用实际的4135型柴油机为研究对象,在喷油提前角不变的情况下,利用霍尔效应式转速传感器测量发动机转速,霍尔效应式压力传感器和位置传感器实测到喷油量、扭矩等数据,建立起非线性发动机调速系统的数学模型。
通过传感器所搜集的参数,引入时间常量Ta=12.1s,通道放大系数Kη=93.8,模型纯滞后时间τ=0.037s。多次给定的额定喷油量油压(kPa)为Qmt=27.5;28.62;30;31.12;32.24;33.33;共6次测量。则柴油机数学模型传递函数为:
执行器的传递函数为:
综合,柴油机模型和执行器模型的被控对象传递函数为:
(2)利用所设计的滑模控制律,设计两条模糊规则确定最终的滑模控制力矩,以减缓抖振影响:
规则1:
规则2:
其中:对输入S定义5个模糊集合负大(NB)、负小(NS)、零(E)、正小(PS)、正大(PB);实施方案中,给定NB、NS、E、PS、PB分别为-2、-1、0、1、2。
以下我们对采用本实施方式对柴油发动机模糊变结构电控调速系统软件在环仿真:
如图3所示,采用本实施方式,在发动机处于0/r·min时,让发动机进入恒定转速为1000/r·min的状态,分别对PID、滑模变结构和本发明所采用的模糊滑模变结构进行仿真;其PID算法在1.5s时间内达到标定转速状态,且存在较大的不确定性扰动。滑模变结构控制算法在1s时间内达到标定转速状态,且存在些许的不确定性扰动。本发明所采用的模糊滑模变结构控制算法在0.5s时间内达到标定转速状态,且基本不存在的不确定性扰动。
如图4所示,采用本实施方式,在发动机处于高速高转矩(转矩154.3N·m)1800/r·min时,让发动机进入恒定转速为1000/r·min的状态,分别对PID、滑模变结构和本发明所采用的模糊滑模变结构进行仿真;其PID算法在3s时间内达到标定转速状态,且存在较大的不确定性扰动。滑模变结构控制算法在2s时间内达到标定转速状态,且存在些许的不确定性扰动。本发明所采用的模糊滑模变结构控制算法在0.5s时间内达到标定转速状态,且基本不存在的不确定性扰动。
如图5所示,采用本实施方式,让发动机处于突减负载工况(转矩由129.3N·m减至74.2N·m),突增负载工况(转矩由74.2N·m增至129.3N·m)时在1300/r·min状态,分别对PID、滑模变结构和本发明所采用的模糊滑模变结构进行仿真;其PID算法在突增突减工况下大约需要0.5s恢复原有状态,其滑模变结构算法在突增突减工况下大约需要0.25s恢复原有状态,本发明所采用的模糊滑模变结构算法在突增突减工况下只需要极短的时间即可恢复原有状态。
由仿真图可知,采用本发明实施方式之后,用自适应模糊控制替代等效控制,通过参数在线调节可有效的减少由于不确定性及外界干扰所造成的动态误差。根据滑模控制原理所构成的两条模糊控制规则,有效的抑制了滑模变结构所产生的抖振对本系统稳定性所带来的影响。
一种基于模糊变结构的柴油发动机电控调速及测试方法专利购买费用说明
Q:办理专利转让的流程及所需资料
A:专利权人变更需要办理著录项目变更手续,有代理机构的,变更手续应当由代理机构办理。
1:专利变更应当使用专利局统一制作的“著录项目变更申报书”提出。
2:按规定缴纳著录项目变更手续费。
3:同时提交相关证明文件原件。
4:专利权转移的,变更后的专利权人委托新专利代理机构的,应当提交变更后的全体专利申请人签字或者盖章的委托书。
Q:专利著录项目变更费用如何缴交
A:(1)直接到国家知识产权局受理大厅收费窗口缴纳,(2)通过代办处缴纳,(3)通过邮局或者银行汇款,更多缴纳方式
Q:专利转让变更,多久能出结果
A:著录项目变更请求书递交后,一般1-2个月左右就会收到通知,国家知识产权局会下达《转让手续合格通知书》。
动态评分
0.0