专利摘要
获得如自立在基板上的突起电极这样的电极。导电膏(202)含有导电粉末和醇类液体成分,而不含粘接剂,所述导电粉末含有导电粒子,所述导电粒子的厚度为0.05μm以上0.1μm以下,相对于该厚度方向而垂直相交的面内的最大跨度即代表长度为5μm以上10μm以下,所述醇类液体成分相对于所述导电膏的重量比为8%以上20%以下。
权利要求
1.一种导电膏,其是可用于基板与该基板上所搭载的电子零件之间的电连接的导电膏,其特征在于,
含有导电粉末和醇类液体成分,而不含粘接剂,
所述导电粉末含有导电粒子,所述导电粒子的厚度为0.05μm以上0.1μm以下,将相对于该厚度方向而垂直相交的面内的最大跨度作为所述导电粒子的代表长度时,则该代表长度为5μm以上10μm以下,
所述醇类液体成分在所述导电膏中的重量比为8%以上20%以下。
2.一种电极连接结构,其是将权利要求1所述的导电膏用于连接所述基板的电极垫与所述电子零件的电极垫的电连接部的电极连接结构,其特征在于,
连接所述基板的电极垫与所述电子零件的电极垫的所述导电膏硬化后的电连接部中,垂直于所述基板的电极垫与所述电子零件的连接方向的截面形状为大致相同形状,截面积的变动为20%以内。
3.一种电极连接结构的制造方法,其是权利要求2所述的电极连接结构的制造方法,其特征在于,包含如下工序:
用所述导电膏在所述基板的电极垫上形成突起电极的工序;
使所述电子零件的电极垫与所述基板的电极垫上的突起电极接触,使该电子零件的电极垫以固定速度在接近所述基板的电极垫的方向上相对移动,如果自所述突起电极受到由于膨胀性而造成反作用力值提高的点的反作用力,则停止所述电子零件的电极垫的相对移动的工序;
在停止所述电子零件的电极垫的移动后,通过对所述突起电极进行硬化而连接所述基板的电极垫与所述电子零件的电极垫的工序。
说明书
技术领域
本发明涉及倒装芯片(Flip-Chip)连接结构及其实现方法。尤其涉及具有膨胀性的导电膏和使用其的电连接结构及其制造方法。
背景技术
已经进行了很多在倒装芯片连接中使用导电膏的尝试。特别是在使用烧结型导电膏(该烧结型导电膏使用了亚微米的导电性微粒子)的接合中,在硬化后具有和导电性材料的块状银一样的温度特性、机械特性,因此可期待接合部能够耐高温。因此,可用于在高温下工作的装置的接合部,因此近年来成为受到关注的技术。
现有技术文献
专利文件
专利文献1:日本公开专利公报“专利5207281号公报”
专利文献2:日本公开专利公报“特开2015-56496号公报”
非专利文件
http://www.stat.phys.kyushu-u.ac.jp/~nakanisi/Physics/Dilatancy/
发明内容
本发明所要解决的技术问题
专利文献1中所揭示的烧结型银浆是将两种银粒子分散于不含粘接剂的粘合剂中而成者,至于硬化后的特性,具有接近块状银的特性。该专利文献1中所揭示的内容是大面积地涂布而搭载电子装置,在加压状态下使其硬化。专利文献1中所揭示的内容是大面积地涂布,因此技术尚未普及到电子装置的电极连接。
另一方面,在专利文献2中揭示了电子装置的电极与电路基板的电极的连接方法。使用图12说明在专利文献2中所揭示的电子装置的电极与电路基板的电极的连接方法。
在图12中,100是半导体芯片,101是半导体芯片的电极垫,200是电路基板,201是电路基板的电极垫。在电路基板200中,以覆盖半导体芯片100的侧面的方式形成隆起部220,自电极垫101起,通过隆起部220的表面,朝向电极垫201而配置烧结型银浆221。
烧结型银浆221具有流动性,因此为了维持烧结型银浆221的中间路径而设置隆起部220。为了维持烧结型银浆221的中间路径而必须沿着电路基板200,自由度受到限制。而且,在此种结构中,烧结型银浆221的截面形状变得不稳定,无法充分发挥材料自身的电传导、热传导优异的特性。
本发明是鉴于所述问题点而成,其目的在于,获得可形成如自立式突起电极这样的电极的导电膏、及使用导电膏对电极间进行连接。
解决问题的手段
为了解决上述课题,本发明的一形态的导电膏是可用于基板与该基板上所搭载的电子零件之间的电连接的导电膏,其特征在于,含有导电粉末和醇类液体成分,而不含粘接剂,所述导电粉末含有导电粒子,所述导电粒子的厚度为0.05μm以上0.1μm以下,将相对于该厚度方向而垂直相交的面内的最大跨度作为所述导电粒子的代表长度时,则该代表长度为5μm以上10μm以下,所述醇类液体成分在所述导电膏中的重量比为8%以上20%以下。
发明效果
根据本发明的一形态而起到如下的效果:可获得如自立式突起电极这样的电极,且使用导电膏而对电极间进行连接。
附图说明
图1是表示本发明的第一实施方式的烧结型银浆的柱状体、电路基板、及半导体芯片的结构的立体图。
图2是表示通过第一实施方式的点胶而形成的导电膏的柱状体的图。
图3是表示本发明的第一实施方式的烧结型银浆连接部的截面图。
图4是说明通过本发明的第一实施方式的点胶机吐出烧结型银浆的柱状体的样子的图。
图5是说明将本发明的第一实施方式的半导体芯片吸附固定于倒装贴片机上的样子的图。
图6是说明通过本发明的第一实施方式的烧结型银浆的柱状体进行倒装芯片连接的样子的图。
图7是说明通过本发明的第一实施方式的点胶机而吐出的烧结型银浆的形状的图。
图8是说明本发明的第二实施方式的烧结型银浆的柱状体的阵列配置的图。
图9是表示用树脂填充本发明的第三实施方式的电连接体的连接部附近的样子的图。
图10是表示本发明的第四实施方式的、使用烧结型银浆也连接了电连接体中的芯片背面的电极的样子的图。
图11是说明在倒装贴片机下搭载时的负重(反作用力)的行为的样子的图。
图12是说明先前的电连接体的图。
图13是表示本发明的第一实施方式的导电性粉末的形状的立体图。
图14是表示本发明的第一实施方式的初步实验结果的图。
图15是表示在各种醇类液体成分的情况下,通过倒装贴片机进行搭载时的负重(反作用力)推移的图。
具体实施方式
[第一实施方式]
(导电膏及电导体概要)
以下,关于本发明的实施方式而进行详细说明。在本实施方式的电连接体中,在基板与该基板上所搭载的电子零件之间的电连接中使用形状保持性高的导电膏。而且,通过点胶机吐出导电膏,在维持其形状的状态下使其烧结。由此获得电连接体。具体而言,使用具有膨胀性的导电膏。
所谓膨胀性是非牛顿流体所具有的一种性质,粘度相对于剪切速率的增加而增加。该性质是在小粒子的液体混合物中所经常表现的性质。例如,如果在干燥的沙子上放置重物则会下沉,但是如果沙子含水而潮湿,则即便放置重物也仅仅下沉少许,其后不再下沉。由于剪切速率会由于变形而上升,因此认为如果达到表现膨胀性的剪切速率,则粘度上升而停止变形。另外,作为特征性现象,变形部分的沙子看起来是干燥的。当试图从接近最密堆积的状态变形时,粒子间距反而增大,水移动至该空间中,因此变形的部分变干燥(参照非专利文献1)。
使用由具有此种膨胀性性质的材料构成的导电膏,通过点胶机等吐出到电路基板的所期望的电极上,由此在所期望形状的硬化前的导电膏上方部分制作突起形状部分。
其后,使元件电极与导电膏的突起形状部分对准,将元件电极抵压于导电膏的突起形状部分。随着将其抵压于导电膏的突起形状部分,导电膏变形,剪切速率上升,其结果达到导电膏表现膨胀性的剪切速率,相对于变形,反作用力转变为增加。类似于如果湿润的沙子少许下沉(变形),则由于膨胀性而变得难以急遽变形的现象。
由于膨胀而造成变形的部分干燥的现象对于烧结型导电膏而言有利。由于粘合剂局部变少,因此导电粒子间接触,局部地产生粒子间的分子间力的键结。因此认为成为暂时接合的状态。
关于成为膨胀性的要点的导电粉末的形状,使用图13而加以说明。图13是表示本发明的第一实施方式的导电粉末的形状的立体图。
如图13所示,对于一种导电性粉末而言,导电粉末在厚度L2方向上具有比较均匀的厚度。导电粉末在垂直于厚度方向的平面内为随机的形状。在导电粉末中,将跨度(宽度)成为最大的部分的长度作为与厚度方向的垂直的方向的代表长度L1。
导电粉末中,代表长度L1、厚度L2均具有一个分布,因此在以下说明中以中间值进行数值表示。导电粉末的厚度L2为0.05μm以上0.1μm以下的量,代表长度L1为5μm以上10μm以下的量。
图14是表示与本发明的第一实施方式的导电膏及电导体中所含的导电粉末相关的初步实验结果的图。
如上所示,将导电粉末中的垂直于厚度方向的面中的跨度的最大长度作为代表长度。
进行如下实验:使用代表长度为8μm且厚度为0.08μm的导电粉末,一面改变醇类液体成分的量、同时混合的球形粒子的有无、粘接剂类粘合剂,一面确认点胶机的吐出状态与焊接的结果。醇类液体成分使用乙二醇,粘接剂类材料使用环氧树脂。醇类液体成分为5%时粘度变得过高而无法吐出。另一方面,醇类液体成分为40%时粘度低而无法保持形状。醇类液体成分为30%时,虽然可以吐出,但在表现出膨胀性之前吐出的导电膏破碎。醇类液体成分为8%以上20%以下时可实现良好的吐出与焊接。
混合了具有与导电粉末的厚度基本相等的跨度的球形导电粉末的导电膏也是吐出、焊接均无问题。
另外,在图14中,关于球形粒子为有的情况,图示了醇类成分为10%时的导电性粉末的厚度为0.05μm以上0.1μm以下、及代表长度为5μm以上10μm以下的范围内的吐出形状及焊接性,但已确认如果将醇类成分设为8%以上20%以下的范围内,吐出形状及焊接性也同样优异。
另一方面,进一步混合了粘接剂类材料的导电膏虽然可以吐出,可以制作吐出形状,但是如果进行焊接则破碎。认为其原因在于并未表现出膨胀性。
导电粉末是(i)代表长度为5μm且厚度为0.1μm的扁平粒子、(i i)代表长度为10μm、厚度为0.05μm的扁平粒子也都可以没有问题地进行吐出、焊接。
然而,在使用了厚度为0.03μm的导电粉末的情况下,材料的活化提高,必须增强保护涂层,因此虽然可以制出吐出形状,但并未表现出膨胀性,在焊接时破碎。
而且,如果是厚度为0.2μm的导电粉末,也并未表现出膨胀性,在焊接时破碎。
结果可知作为导电膏,优选使用厚度为0.05μm以上0.1μm以下、代表长度为5μm~10μm的导电粉末,分散于不含粘接剂的醇类液体成分中而成的导电膏。优选醇类液体成分的重量比为8%以上20%以下。
厚度为亚微米的导电粉末的分子间力的键结大,因此导电粉末的厚度优选为0.1μm以下。
然而,在厚度小于0.05μm的导电粉末的情况下,如果溶剂多、或者并未使用使粒子表面的分子间力变弱的材料,则无法获得稳定的导电膏,由于溶剂多而造成粘度过于降低,无法制成吐出形状,而且使粒子表面的分子间力变弱的材料阻碍膨胀性的表现,因此并非优选的材料。因此,导电粉末的厚度优选为0.05μm以上。
而且,作为溶解导电粉末的溶液成分,仅使用醇类液体成分。如果添加粘接剂等高分子材料,可能会阻碍膨胀性的表现。
在本实施方式中,使用以厚度为0.08μm、代表长度为8μm(厚度与代表长度的比为100倍)的银粒子(导电粉末)、重量比10%为乙二醇而制作的导电膏,通过点胶机吐出导电膏后直接进行硬化(烧结),则以基本维持吐出形状的形态完成烧结。
烧结而成的银浆烧结体显示出良好的电传导性,另外在混合了跨度为0.1μm(与厚度基本上相等)的球形粒子的情况下,球形粒子存在于扁平粒子间的接合界面,因此电传导进一步变良好,相对于金属银的2.1μΩ·cm而言,具有3.9~7.8μΩ·cm的值,与焊料等相比而言,显示出足够高的值。热传导也同样如此。
使用该烧结型银浆,以点胶机在电路基板的电极垫上形成该烧结型银浆的柱状体(参照图2)。
接着,将半导体芯片吸附固定于倒装贴片机的芯片吸附部(焊接工具),将该半导体芯片的电极垫与电路基板的垫对准,降低半导体芯片与电路基板的间隔直至施加所期望的负重(反作用力),释放芯片吸附部的固定,仅通过半导体芯片的自身重量将其固定于电路基板上。倒装贴片机所监视(monitor)的芯片的反作用力如图11所示地表现。在倒装贴片机一面以规定速度将半导体芯片的移动速度保持为固定,一面按下到电路基板上时,由于表现出膨胀性,出现反作用力提高的点(图11的C点)。于该位置释放芯片吸附,通过芯片自身重量进行固定。
图15是表示在各种醇类液体成分的情况下,通过倒装贴片机进行搭载时的负重(反作用力)推移的图。图15中所示的EG 10%~E G 40%是表示醇类液体成分的重量百分比(乙二醇的重量百分比)。
EG 8%、EG 10%、及EG 20%表示了显示出膨胀性而可以焊接的例子。
另一方面,EG 30%与EG 40%表示了并未表现出膨胀性,在焊接时破碎的例子。
作为反作用力的经过,EG 20%、EG 30%、及EG 40%作出类似的行为,但作为反作用力开始上升的点,在EG 30%与EG 40%的情况下是由于导电膏完全破碎而造成的上升,相对于此,EG 20%是由于随着表现出膨胀性而停止变形所造成的。EG 8%、及EG 10%也相同,反作用力再次上升的点是由于随着表现出膨胀性而停止变形所造成的。
EG 8%、EG 10%、及EG 20%的举动稍微不同,在EG 20%的情况下,粘度低,因此拉丝部分变长,其破碎部分的变形变长。
根据该结果可知:如果使用具有膨胀性的导电膏,则可通过预先设定由于膨胀性而停止变形的负重,通过控制负重而进行焊接。
其后,通过使烧结型银浆烧结,可实现仅通过烧结型银浆而连接的半导体芯片与电路基板的连接。
通过如上所述地进行,可在保持自点胶机吐出的形状下进行烧结,可形成与支柱连接同样的电连接部的形状。
另外,为了防止氧化等而在半导体芯片的芯片电极表面、电路基板的电极垫表面形成薄膜,但为了简单起见而省略其说明。而且,它们的存在差异所带来的效果影响较小。
(主要优点)
此处,在以下说明中,有时将连接半导体芯片与电路基板的导电膏称为连接部(电连接部)。
如上所述而形成的连接部不含粘接剂而仅由烧结的银浆构成,因此电传导、热传导均优异,而且即使在高温下也维持了机械特性。
由于烧结型银浆的形状维持性,并不沿着电路基板,而是制成如突起电极这样的电极。另外,与邻接电极的间隔并不变化,电极间的绝缘性良好。
而且,作为烧结型银浆的特征的微小空间多的烧结结构允许变形,应力松驰机制优于所有由金属制成的支柱。
另外,在使烧结型银浆烧结时,需要使混炼的粘合剂挥发,但通过使烧结型银浆成为多个块,在其间设置空间,可使表面积变大,粘合剂的挥发在较短时间内完成,因此具有在较短时间内完成烧结的附属效果。
[实验例]
使用图1~图11对本发明的第一实施方式的实验例加以说明。
图1是表示本发明的第一实施方式的烧结型银浆的柱状体、电路基板、及半导体芯片的结构的立体图。
在图1中,100是半导体芯片(元件、电子零件),101是半导体芯片的电极垫,200是电路基板(基板),201是电路基板200的电极垫。通过点胶机在电路基板200的电极垫201上吐出形成导电膏(导电性材料)202。由此在电路基板200的电极垫201上竖立柱状的导电膏202。
在本实验例中,导电膏202使用烧结型银浆。用作导电膏202的烧结型银浆含有扁平状的银粒子(其厚度为0.05μm以上0.1μm以下,且在将与厚度垂直的面内的最大跨度作为代表长度时,代表长度为5μm以上10μm以下)和乙二醇,不含粘接剂,上述乙二醇的重量比率是导电膏202的8%以上20%以下。
而且,在该状态下将半导体芯片100的电极垫101与电路基板200的电极垫201对准,进一步进行倒装芯片连接,由此使半导体芯片100的电极垫101与形成在电路基板200的电极垫201上的导电膏202的顶部接触。由此将半导体芯片100搭载于电路基板200上。另外,在图1中,为了附图的简单化而将导电膏202绘制成圆柱状。然而,实际上在点胶导电膏202时,由于被称为“拉丝(cobwebbing)”的现象,即使停止吐出也会由于材料的粘度、喷嘴的移动等影响而伸长为圆锥状,在变细的部分断开。因此,导电膏202的上方部分实际上成为圆锥形。
图2是表示由点胶机吐出而形成的导电膏的形状例的图。图2中所示的导电膏202的下方部分的“圆柱状”部分是一面由点胶机进行固定的吐出,一面使喷嘴以固定速度上升的部分。图2中所示的导电膏202的上方部分的“拉丝”部分是停止点胶机的吐出,使喷嘴上升的部分,其是由于导电膏202的粘度、喷嘴速度等而成为圆锥状,在变细的部分断开的部分。“拉丝”部分的基部的直径为200μm左右。
图3是经由导电膏202而连接的电路基板200与半导体芯片100的连接状态的截面图。
如图3所示,电路基板200的电极垫201与半导体芯片100的电极垫101对准。而且,通过将半导体芯片100倒装芯片连接于电路基板200上,可经由导电膏202而将电极垫101与电极垫201电连接。由此完成电连接体(电极连接结构)1。导电膏202的热传导性也高,因此电极垫101与电极垫201也热连接。亦即,导电膏202发挥作为将电极垫101与电极垫201电连接的电连接部的功能。
图4是表示在电路基板200的电极垫201上形成导电膏202的方法例的图。
如图4所示,自点胶机(未图示)的注射器(未图示)前端的针203吐出导电膏202,在电路基板200的电极垫201上形成导电膏202。在本实验例中,点胶机使用武藏高科技公司制造的点胶机。而且,针203使用(i)内径100μm-外径200μm的针、(ii)内径150μm‐外径250μm的针、(iii)内径200μm‐外径300μm的针。
由于烧结型银浆的特性,如果自点胶机的针203吐出,则导电膏202以该状态维持形状。自(i)内径100μm的针203吐出的导电膏202的直径为100μm~110μm的范围,自(ii)内径150μm的针203吐出的导电膏202的直径为150μm~165μm,自(iii)内径200μm的针203吐出的导电膏202的直径为200μm~220μm,分别为圆柱状。
对自上述(i)~(iii)的各针203吐出的导电膏202直接进行烧结,结果各个导电膏202的直径收缩为10μm以内,以维持形状的状态下进行烧结。
自针203吐出的烧结型银浆在所期望的高度停止吐出,进一步将针203向上拉,自然地变细而分离。导电膏202的上方部分成为被称为“拉丝”的锥状。锥的角度可通过烧结型银浆的粘度和针203的拉起速度而控制。锥的部分吸收半导体芯片100、电路基板200(尤其是电路基板200)的表面的凹凸、起伏等平面性偏差,所形成的导电膏202的高度不均一,因此起到重要作用。
在针203中,释放用以进行吐出的压缩空气后,以5mm/min使针203上升,则“拉丝”部分完成为顶端角度为30度的圆锥形状。而且,如果以10mm/min使针203上升,则“拉丝”部分的顶端角度变化为10度。尽管由于针203的上升速度而使“拉丝”部分的顶端角度变化,但是最终角度稳定。
图5是表示将半导体芯片100吸附固定于倒装贴片机(未图示)的吸附头104上,将电极垫101与电极垫201对准的样子的图。通过自吸附头104的吸附孔进行真空吸附,将半导体芯片100固定于吸附头104上。其后,使用倒装贴片机的机构将电极垫101与电极垫201对准。
倒装贴片机使用奥原电气公司制造的倒装贴片机。使用中央具有直径为1mm的真空吸附孔的相对于半导体芯片100的大小大若干的平夹头,在平夹头上吸附半导体芯片100。其后,通过附接到倒装贴片机上的相机识别半导体芯片100的电极垫101、电路基板200的电极垫201,进行对准而使半导体芯片100向电路基板200侧移动。
图6是表示相对于电路基板200而降低倒装贴片机(未图示)的吸附头104,使半导体芯片100的电极垫101与导电膏202接触的样子的图。作为倒装贴片机的功能,具有使吸附头104基于反作用力信息而移动的功能。利用该功能,可一面使导电膏202的“拉丝”部分的圆锥状部破碎,一面使电极垫101与导电膏202接触,以残留导电膏202的圆柱状部分的形态使电极垫101向接近电极垫201的方向相对移动而确定位置。其后,解除吸附头104的真空吸附,使吸附头104与具有电极垫101的半导体芯片100分离,成为电极垫101与电路基板200的电极垫201上的导电膏202接触的状态。此时的负重(反作用力)如图11所示。详细如后所述。
如图6所示,当电极垫101开始与导电膏202的连接部,亦即“拉丝”部分接触时,反作用力缓缓上升,其后一旦反作用力的上升变缓后,开始上升。
观察反作用力再次开始上升的值,在达到该反作用力值时停止吸附头104,自吸附头104释放半导体芯片100,其后在通过半导体芯片100的自身重量使电极垫101与导电膏202保持接触的状态下,对系统整体加热,对导电膏202进行焙烧。由此完成导电膏202与电极垫101的连接。
导电膏202由于膨胀性而维持形状,因此在焙烧时无需对半导体芯片100进行加压。
至于导电膏202的硬化,首先保持在比溶剂沸点低5~10℃的温度下以使导电膏202的溶剂挥发,其后上升至银浆烧结的温度,进行保持而完成烧结,恢复至常温。其例子是相对于溶剂的沸点197℃而言,在190℃下保持15分钟,其后上升至烧结温度250℃而保持30分钟,由此完成烧结。由此而完成电连接体1。
如上所述,导电膏202是具有形状维持特性的烧结型银浆,因此形成的导电膏202是并未沿着电路基板200或半导体芯片100而自立的柱状突起电极。另外,作为导电膏202的烧结型银浆不含粘接剂而仅由烧结的银浆构成,因此电传导、热传导均优异,而且即使在高温下也可以维持机械特性。
而且,在构成所述连接部的柱状导电膏202中,水平截面形状(与导电膏202的延伸方向垂直的截面形状)相互为大致相同形状,截面积的变动为20%以内。
图7表示进行点胶的针203的形状与吐出的导电膏202的形状。203‐1是圆形的针。如果自圆形的针203‐1吐出,则如导电膏202‐1所示那样,导电膏成为圆柱状。203-2是六边形的针的例子。如果自六边形的针203‐2吐出,则如导电膏202‐2所示那样,导电膏成为六边形。而且,如果自六边形的针203‐2吐出,则虽然在内侧有角度,但其为120度,因此并没有特别的问题。在四边形的针的情况下,内侧的角度成为90度,因此角部的吐出并不顺利。通过使角部变圆而成为比导电膏202的导电粒子的代表长度大的圆弧状,可并无问题地进行吐出。具体而言,相对于银粒子的代表长度的最大8μm,将角部的圆角设为2倍的16μm。而且,优选为5倍的40μm以上,其稳定性增加。
[第二实施方式]
图8是表示将针排列为阵列状的例子的图。图8(a)是表示将圆形的针203‐1排列为阵列状的例子的图,图8(b)是表示将六边形的针203‐2排列为阵列状的例子的图。
对于面积大的电极,将针排列为阵列状。图8的例子是排列为电极密度变得最高的六方最密状。
图8中的双点画线概念性地表示了点胶机的喷嘴的大小,排列可以考虑喷嘴的大小与点胶机的对准精度来确定间距。
通过如上所述地进行,作为电极而发挥功能的截面积增加,连接电阻降低。另一方面,连接部的表面积增加,变得可顺利地进行烧结型银浆的粘合剂挥发,因此变得可在短时间内进行烧结。
例如,在并未成为图8(a)、(b)所示的阵列状的针203‐1、203-2的情况下,用烧结型银浆对1mm×0.5mm的电极的整个面进行连接时,需要进行30分钟的预热而使粘合剂挥发,其后进行30分钟的烧结,但通过如图8(a)、(b)所示那样将针203‐1、203-2配置为阵列状,即使将预热时间从30分钟缩短到5分钟,也可以充分地烧结。
而且,如上所示,通过将针203‐1、203-2配置为阵列状,可使多根柱状导电膏202的水平截面形状更确实地为大致相同形状,且可将截面积的变动设为20%以内。
[第三实施方式]
图9是表示通过导电膏202连接电极垫101与电极垫201后,用树脂材料205填充电极垫101与电极垫201之间的区域,亦即作为多个导电膏202的连接部以外的部分的样子的截面图。
烧结型银浆在电传导、热传导方面表现出接近块状银的特性,但由于其是烧结体,因此机械特性、特别是延展性没有金属那样的特性。因此,连接部对反复负重的耐受性不及金属接合。但是,由于在最初的连接、其后顺次修理等温度历史中,连接并无问题,因此在最终的运转确认后,将树脂材料205填充于烧结型银浆连接部以外的部分中,结果连接部的可靠性提高,作为模块而发挥出充分的可靠性。所填充的树脂材料205可使用液状环氧树脂等,在使用杨氏模量比块状银小、且热膨胀系数接近块状银的材料时,可靠性最好。
[第四实施方式]
图10是表示在需要背面接触的元件等中,通过由多个导电膏(第2导电性材料)204构成的连接部来连接对半导体芯片100的背面电极207与电路基板200的电极垫201进行连接的连接件(第二基板)300的样子的截面图。导电膏204也使用与导电膏202同样的材料。
对于半导体芯片100表面的电极垫101,通过导电膏202来连接,进行烧结后,用点胶机在背面电极207上形成导电膏204,同时在电路基板200的所期望的电极垫201上也形成导电膏202。由此在背面电极207上竖立柱状的多个导电膏204,且在电极垫201上竖立柱状的多个导电膏202。
其后,将连接件300吸附固定在倒装贴片机上后按下,使连接件300与半导体芯片100背面的导电膏204、电路基板200的电极垫上的导电膏202连接,且使导电膏204、202烧结。在该烧结时,已经进行了烧结的与半导体芯片100表面的电极垫101接触的导电膏202由于烧结型银浆的特性,其状态并不产生变化。
而且,在这种情况下,还可以对由半导体芯片100的表面、背面两者上的导电膏202、204形成的连接部同时进行烧结。
首先,在电路基板200的电极垫201上形成所有导电膏202。
其次,通过倒装贴片机搭载半导体芯片100,将导电膏204点胶在半导体芯片100的背面。接着,通过倒装贴片机搭载连接件300,其后对所有的导电膏202、204进行焙烧。烧结型银浆连接部由于其形状保持性,在通过倒装贴片机搭载连接件300时,半导体芯片100表面侧的连接部(导电膏202)依旧保持形状。由于该性质,可同时进行表背面的连接。如上所示地进行而完成了堆叠连接的电连接体(电极连接结构)1A。
[第五实施方式]
图11是表示将吸附在倒装贴片机上的半导体芯片100按下到电路基板200上时,导电膏202、204的反作用力的推移的图。用贴片机的芯片移动量与反作用力进行绘制。
如图11,一面监视导电膏202、204的反作用力,一面控制抵压半导体芯片100及连接件300的时序。
如果按下半导体芯片100,则在芯片的电极与烧结型银浆的“拉丝”的前端接触之前并不产生反作用力。在A点时,“拉丝”的前端与芯片的电极接触,反作用力缓缓增加,到达B点时,拉丝部分全部破碎,截面积变得不增加,因此在并不表现膨胀性的移动速度下,反作用力的上升变缓慢。如果继续按下,在C点时,反作用力开始增加。认为其原因在于:表现出材料的膨胀性,反作用力上升。
根据该反作用力的行为可知:在倒装芯片时,如果以由于膨胀性而造成反作用力提高的点的反作用力值来停止的方式进行控制,可稳定地进行连接。连接高度的控制可根据所吐出的烧结型银浆的量而进行。
[小结]
本发明的第一形态的导电膏202是可用于基板(电路基板200)与该基板(电路基板200)上所搭载的电子零件(半导体芯片100)之间的电连接的导电膏202,其特征在于,含有导电粉末和醇类液体成分,不含粘接剂,所述导电粉末含有导电粒子,所述导电粒子的厚度为0.05μm以上0.1μm以下,将相对于该厚度方向而垂直相交的面内的最大跨度作为所述导电粒子的代表长度时,则该代表长度为5μm以上10μm以下,所述醇类液体成分在所述导电膏202中的重量比为8%以上20%以下。
根据所述构成,可获得作为具有形状维持特性的烧结型银浆的导电性材料。因此,可由所述导电性材料形成如自立在所述基板上的突起电极这样的电极。另外,由所述导电性材料形成的烧结型银浆不含粘接剂而仅由烧结的银浆构成,因此电传导、热传导均优异,且即使在高温下也维持机械特性。
本发明的第二形态的电连接结构(电连接体1)是在连接所述基板(电路基板200)的电极垫201与所述电子零件(半导体芯片100)的电极垫101的电连接部(连接部)中使用所述第一形态的导电膏202的电极连接结构(电连接体1),其特征在于,连接所述基板(电路基板200)的电极垫201与所述电子零件(半导体芯片100)的电极垫101的所述导电膏硬化后的电连接部中,垂直于所述基板(电路基板200)的电极垫201与所述电子零件(半导体芯片100)的连接方向的截面形状为大致相同形状,截面积的变动为20%以内。
本发明的第三形态的电极连接结构(电连接体1)的制造方法是上述第二形态的电极连接结构的制造方法,其特征在于,包含如下工序:用所述导电膏202在所述基板(电路基板200)的电极垫201上形成突起电极的工序;使所述电子零件(半导体芯片100)的电极垫10与所述基板(电路基板200)的电极垫201上的突起电极接触,使该电子零件(半导体芯片100)的电极垫101以一定速度在接近所述基板(电路基板200)的电极垫201的方向上相对移动,如果自所述突起电极受到预定值的反作用力,则停止所述电子零件(半导体芯片100)的电极垫101的相对移动的工序;在停止所述电子零件(半导体芯片100)的电极垫101的移动后,通过对所述突起电极进行硬化而连接所述基板(电路基板200)的电极垫201与所述电子零件(半导体芯片100)的电极垫101的工序。
本发明并不限定于上述各实施方式,可在权利要求书所示的范围内进行各种变更,关于将不同实施方式中所分别揭示的技术手段适宜组合而获得的实施方式,也包含在本发明的技术范围内。此外,可通过将各实施方式中所分别揭示的技术手段加以组合而形成新的技术特征。
附图标记说明
1、1A 电连接体(电极连接结构)
100 半导体芯片(元件、电子零件)
101、201 电极垫
104 吸附头
200 电路基板(基板)
202 导电膏(突起电极)
203 针
204 导电膏(突起电极)
205 树脂材料
207 背面电极
300 连接件(第二基板)
导电膏、电极连接结构及电极连接结构的制造方法专利购买费用说明
Q:办理专利转让的流程及所需资料
A:专利权人变更需要办理著录项目变更手续,有代理机构的,变更手续应当由代理机构办理。
1:专利变更应当使用专利局统一制作的“著录项目变更申报书”提出。
2:按规定缴纳著录项目变更手续费。
3:同时提交相关证明文件原件。
4:专利权转移的,变更后的专利权人委托新专利代理机构的,应当提交变更后的全体专利申请人签字或者盖章的委托书。
Q:专利著录项目变更费用如何缴交
A:(1)直接到国家知识产权局受理大厅收费窗口缴纳,(2)通过代办处缴纳,(3)通过邮局或者银行汇款,更多缴纳方式
Q:专利转让变更,多久能出结果
A:著录项目变更请求书递交后,一般1-2个月左右就会收到通知,国家知识产权局会下达《转让手续合格通知书》。
动态评分
0.0