专利转让平台_买专利_卖专利_中国高校专利技术交易-买卖发明专利上知查网

全部分类
全部分类
一种液相氧化分解钒渣的方法

一种液相氧化分解钒渣的方法

IPC分类号 : C22B34/22,C22B34/32,C22B3/00

申请号
CN201010034089.5
可选规格
  • 专利类型: 发明专利
  • 法律状态: 有权
  • 申请日: 2010-01-13
  • 公开号: 102127656A
  • 公开日: 2011-07-20
  • 主分类号: C22B34/22
  • 专利权人: 中国科学院过程工程研究所

专利摘要

本发明涉及液相氧化分解钒渣的方法,包括按照NaOH与NaNO3质量比为0.2∶1-4∶1,NaOH和NaNO3总量与钒渣的质量比为2.5∶1-6∶1称料;将称好的NaOH与NaNO3置于常压反应釜中,升温至330-480℃后,再把称好的钒渣加入到NaOH-NaNO3熔盐中,然后通入氧化性气体,在330-480℃下进行液相氧化反应,反应0.5-6小时后得到反应浆料;反应浆料用稀释剂稀释,稀释至料液氢氧化钠浓度为100-500g/L,得到含氢氧化钠、硝酸钠、钒酸钠、铬酸钠以及尾渣的混合浆料;再过滤分离得到尾渣和含有钒、铬的水溶液。该方法反应温度低,常压操作,安全性好,易于工业实施,可实现钒渣中钒铬共提且钒铬资源利用率高,分解后的尾渣中钒含量为0.5-1wt%(以V2O5计),尾渣中铬含量为0.5-1wt%(以Cr2O3计)。

说明书

技术领域

技术领域

本发明涉及一种钒渣提钒的生产方法,特别涉及一种液相氧化分解钒渣同步提取钒、铬的方法。

技术背景

背景技术

钒是一种重要的战略金属,在冶金、航天和化工部门有着广泛用途。钢铁工业中由钒钛磁铁矿生产的钒渣是提钒的主要原料。钒钛磁铁矿在高炉中或直接还原流程生产的含钒生铁,在铁水氧化吹钒过程中,使钒氧化后进入炉渣,得到含钒量较高的钒渣。钒钛磁铁矿中一般含铬,在转炉吹钒过程中,因钒、铬性质相近,铬随钒一并氧化进入渣相。

钒渣钠化焙烧提钒工艺为钒渣提钒传统工艺,其基本原理是以食盐或苏打为添加剂(中国专利CN101215005A,CN1884597A、CN86108218A),通过高温钠化氧化焙烧(750-850℃),将钒渣中低价态的钒转化为水溶性五价钒的钠盐,再对钠化焙烧产物直接水浸,得到含钒的浸取液,经铵盐沉淀和还原焙烧后,获得钒的氧化物产品。该工艺的主要不足为:(1)如果采用食盐作为添加剂,在高温钠化焙烧过程中会产生有害的HCl、Cl2等侵蚀性气体,污染环境;(2)钒回收率低,经多次焙烧后钒的回收率仅为80%;(3)钒渣中伴生的铬不能回收利用,同时提钒尾渣因含铬导致环境污染严重;(4)焙烧温度高(750-850℃),且需多次焙烧,能耗较高。

最近报道的钙化焙烧钒渣工艺(CN101161831A)是将钙化合物作为熔剂添加到钒渣中造球、高温焙烧(600-950℃),使钒氧化生成不溶于水的钒的钙盐,再用酸将其浸出进入浸出液,进而制取钒氧化物等钒产品。此法不会产生HCl、Cl2等有害气体,焙烧后的浸出渣不含钠盐,有利于综合利用。但钙化焙烧提钒工艺对焙烧物有一定的选择性,钒的回收率不足80%,高温焙烧,能耗较高,且钒渣中伴生的铬资源仍不能同步利用。

发明内容

发明内容

本发明的目的是克服现有钒渣钠化焙烧提钒生产方法中存在的钒回收率低、钒渣中伴生的铬不能同时回收利用,并且在生产过程中有含氯气体排放污染环境,以及焙烧温度高和能耗高的不足,从而提供一种在相对低温情况下,采用液相氧化分解钒渣的方法,为实现后续工艺从钒渣中同步提取钒、铬提供了条件,该方法在常压下操作,且安全性好,达到钒渣资源的高效、清洁利用。

本发明的目的是这样实现的:

本发明提供的液相氧化分解钒渣的方法,包括以下步骤:

1)首先配制反应物料:称取钒渣、NaOH、NaNO3,其中,NaOH与NaNO3质量比为0.2∶1-4∶1,NaOH和NaNO3总量与钒渣的质量比为2.5∶1-6∶1;

2)液相氧化反应:将步骤1)称好的NaOH与NaNO3置于常压反应釜中,升温至330-480℃生成NaOH-NaNO3熔盐,再把称好的钒渣加入到NaOH-NaNO3熔盐中,然后通入氧化性气体,在330-480℃下进行液相氧化反应,反应0.5-6小时后得到反应浆料;其中,钒渣中的低价钒被氧化成五价钒,生成钒酸钠,同时三价铬被氧化为六价铬,生成铬酸钠;

3)反应浆料稀释:将步骤3)中生成的反应浆料用稀释剂稀释,稀释至料液氢氧化钠浓度为100-500g/L,得到含氢氧化钠、硝酸钠、钒酸钠、铬酸钠以及尾渣的混合浆料;

4)过滤分离:将步骤3)得到的混合浆料在80-130℃进行过滤分离,得到尾渣和含有钒、铬的水溶液。

在上述技术方案中,所述钒渣为由钒钛磁铁矿经高炉或直接还原流程生产的含钒(铬)生铁(水),再在高温条件下以氧气或空气为氧化介质采用摇包提钒、铁水包提钒、及各种顶吹复吹转炉提钒等生产过程形成的钒渣。

在上述的技术方案中,所述的稀释剂为0-400g/L的氢氧化钠溶液或水。

在上述的技术方案中,在步骤2)中所述的氧化气体是空气、氧气或空气、氧气以任何体积比例混合的混合气体。

在上述的技术方案中,在步骤2)中所述的氧化性气体的流量控制在0.2-1L/min。

本发明的方法与现有技术相比具有以下优点:

1.本发明在NaOH-NaNO3熔盐体系中采用液相氧化法分解钒渣的方法,其反应温度为330-480℃,比传统钠化焙烧工艺使用的温度降低300℃以上,与最近报道的钙化焙烧钒渣工艺(CN101161831A)相比,反应温度降低220-500℃;因此大大地节约了能耗;

2.本发明的方法对钒铬资源利用率高,钒渣经液相氧化分解后,尾渣中钒含量为0.5-1wt%(以V2O5计),尾渣中铬含量为0.5-1wt%(以Cr2O3计);

3.本发明的方法在液相氧化过程不会产生对人和环境有害的粉尘与废气,因此是一种非常环保的方法;

4.本发明的方法在常压下操作,易于工业实施,且安全性好;

5.本发明的方法所用的NaNO3介质同时也是缓蚀剂,既节约原料,又能显著降低NaOH介质对设备的腐蚀性,提高了工业可操作性。

附图说明

附图说明

图1是本发明的液相氧化分解钒渣方法的工艺流程图

具体实施方式

具体实施方式

以下结合附图和实施例对本发明进行详细地说明

实施例1:

本实施例中使用的钒渣是由钒钛磁铁矿经高炉流程生产的含钒(铬)生铁(水),再在高温条件下以空气为氧化介质采用摇包提钒过程形成的钒渣。

1)首先配制反应物料:按照NaOH与NaNO3质量比为0.2∶1,NaOH与NaNO3总量与钒渣的质量比为6∶1称料;称取50g小于200目的承钢钒渣(钒渣中V2O5含量为10.22wt%,Cr2O3含量为3.98wt%)、50g NaOH和250g NaNO3

2)液相氧化反应:将步骤1)配制好的NaOH与NaNO3置于常压反应釜中,设定反应温度420℃,开始升温;升至420℃,将钒渣加入到NaOH-NaNO3熔盐中,通入空气,空气流量控制在1L/min,在完全混合条件下反应6小时。

3)反应浆料稀释:将步骤3)中得到的反应浆料用400g/L的氢氧化钠溶液稀释,稀释至料液氢氧化钠浓度约为250g/L,得到含氢氧化钠、硝酸钠、钒酸钠、铬酸钠以及尾渣的混合浆料;

4)过滤分离:将步骤3)得到的混合浆料在100℃进行过滤分离,得到尾渣和含有钒、铬的水溶液。将尾渣充分洗涤、干燥后测定其中含总钒为0.67wt%(以V2O5计),总铬为0.69wt%(以Cr2O3计)。

实施例2

本实施例中使用的钒渣是由钒钛磁铁矿经直接还原流程生产的含钒(铬)生铁(水),再在高温条件下以氧气为氧化介质采用铁水包提钒过程形成的钒渣。

1)首先配制反应物料:称取100g承钢钒渣(钒渣中V2O5含量为7.3wt%,Cr2O3含量为3.6wt%)、400g NaOH和100g NaNO3,NaOH与NaNO3质量比为4∶1,NaOH与NaNO3总量与钒渣的质量比为5∶1;

2)液相氧化反应:将步骤1)配制好的NaOH与NaNO3置于常压反应釜中,设定反应温度330℃,开始升温;升至330℃,将钒渣加入到NaOH-NaNO3熔盐中,通入氧气,氧气流量控制在0.2L/min,在完全混合条件下反应0.5小时。

3)反应浆料稀释:将步骤3)中得到的反应浆料用水稀释,稀释至料液氢氧化钠浓度约为100g/L,得到含氢氧化钠、硝酸钠、钒酸钠、铬酸钠以及尾渣的混合浆料;

4)过滤分离:将步骤3)得到的混合浆料在80℃进行过滤分离,得到尾渣和含有钒、铬的水溶液。将尾渣充分洗涤、干燥后测定其中含总钒为0.69wt%(以V2O5计),总铬为0.91wt%(以Cr2O3计)。

实施例3

本实施例中使用的钒渣是由钒钛磁铁矿经高炉流程生产的含钒(铬)生铁(水),再在高温条件下以空气为氧化介质采用顶吹复吹转炉提钒过程形成的钒渣。

1)首先配制反应物料:称取200g小于200目的承钢钒渣(钒渣中V2O5含量为10.22wt%,Cr2O3含量为3.98wt%)、400g NaOH和100g NaNO3,NaOH与NaNO3质量比为4∶1,NaOH与NaNO3总量与钒渣的质量比为2.5∶1;

2)液相氧化反应:将步骤1)配制好的NaOH与NaNO3置于常压反应釜中,设定反应温度480℃,开始升温;升至480℃,将钒渣加入到NaOH-NaNO3熔盐中,通入空气和氧气的混合气体,空气∶氧气体积比例为1∶4,气体流量控制在0.5L/min,在完全混合条件下反应3小时。

3)反应浆料稀释:将步骤3)中得到的反应浆料用400g/L的氢氧化钠溶液稀释,稀释至料液氢氧化钠浓度约为500g/L,得到含氢氧化钠、硝酸钠、钒酸钠、铬酸钠以及尾渣的混合浆料;

4)过滤分离:将步骤3)得到的混合浆料在120℃进行过滤分离,得到尾渣和含有钒、铬的水溶液。将尾渣充分洗涤、干燥后测定其中含总钒为0.57wt%(以V2O5计),总铬为0.72wt%(以Cr2O3计)。

实施例4

本实施例中使用的钒渣是由钒钛磁铁矿经直接还原流程生产的含钒(铬)生铁(水),再在高温条件下以空气为氧化介质采用铁水包提钒过程形成的钒渣。

1)首先配制反应物料:称取400g小于200目的承钢钒渣(钒渣中V2O5含量为10.22wt%,Cr2O3含量为3.98wt%)、800g NaOH和800g NaNO3,NaOH与NaNO3质量比为1∶1,NaOH与NaNO3总量与钒渣的质量比为4∶1;

2)液相氧化反应:将步骤1)配制好的NaOH与NaNO3置于常压反应釜中,设定反应温度375℃,开始升温;升至375℃,将钒渣加入到NaOH-NaNO3熔盐中,通入空气和氧气的混合气体,空气∶氧气体积比例为4∶1,气体流量控制在0.5L/min,在完全混合条件下反应4小时。

3)反应浆料稀释:将步骤3)中得到的反应浆料用水稀释,稀释至料液氢氧化钠浓度约为200g/L,得到含氢氧化钠、硝酸钠、钒酸钠、铬酸钠以及尾渣的混合浆料;

4)过滤分离:将步骤3)得到的混合浆料在80℃进行过滤分离,得到尾渣和含有钒、铬的水溶液。将尾渣充分洗涤、干燥后测定其中含总钒为0.54wt%(以V2O5计),总铬为0.55wt%(以Cr2O3计)。

实施例5

本实施例中使用的钒渣是由钒钛磁铁矿经高炉流程生产的含钒(铬)生铁(水),再在高温条件下以空气为氧化介质采用摇包提钒过程形成的钒渣。

1)首先配制反应物料:称取500g承钢钒渣(钒渣中V2O5含量为7.3wt%,Cr2O3含量为3.6wt%)、1000g NaOH和1000g NaNO3,NaOH与NaNO3质量比为1∶1,NaOH与NaNO3总量与钒渣的质量比为4∶1;

2)液相氧化反应:将步骤1)配制好的NaOH与NaNO3置于常压反应釜中,设定反应温度400℃,开始升温;升至400℃,将钒渣加入到NaOH-NaNO3熔盐中,通入空气和氧气的混合气体,空气∶氧气体积比例为1∶1,气体流量控制在0.5L/min,在完全混合条件下反应1小时。

3)反应浆料稀释:将步骤3)中得到的反应浆料用150g/L的氢氧化钠溶液稀释,稀释至料液氢氧化钠浓度约为300g/L,得到含氢氧化钠、硝酸钠、钒酸钠、铬酸钠以及尾渣的混合浆料;

4)过滤分离:将步骤3)得到的混合浆料在110℃进行过滤分离,得到尾渣和含有钒、铬的水溶液。将尾渣充分洗涤、干燥后测定其中含总钒为0.49wt%(以V2O5计),总铬为0.51wt%(以Cr2O3计)。

在上述实施例中,步骤3)中将得到的混合浆料在80-130℃进行过滤分离是常规工艺,是本专业技术人员可以实施的。

当然,本发明还可有其他多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变型,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。

一种液相氧化分解钒渣的方法专利购买费用说明

专利买卖交易资料

Q:办理专利转让的流程及所需资料

A:专利权人变更需要办理著录项目变更手续,有代理机构的,变更手续应当由代理机构办理。

1:专利变更应当使用专利局统一制作的“著录项目变更申报书”提出。

2:按规定缴纳著录项目变更手续费。

3:同时提交相关证明文件原件。

4:专利权转移的,变更后的专利权人委托新专利代理机构的,应当提交变更后的全体专利申请人签字或者盖章的委托书。

Q:专利著录项目变更费用如何缴交

A:(1)直接到国家知识产权局受理大厅收费窗口缴纳,(2)通过代办处缴纳,(3)通过邮局或者银行汇款,更多缴纳方式

Q:专利转让变更,多久能出结果

A:著录项目变更请求书递交后,一般1-2个月左右就会收到通知,国家知识产权局会下达《转让手续合格通知书》。

动态评分

0.0

没有评分数据
没有评价数据
×

打开微信,点击底部的“发现”

使用“扫一扫”即可将网页分享至朋友圈

×
复制
用户中心
我的足迹
我的收藏

您的购物车还是空的,您可以

  • 微信公众号

    微信公众号
在线留言
返回顶部