IPC分类号 : F04B35/02,F04B25/02,F04B39/00,F04B39/16,F04B49/00,F04B49/10,F04B49/16
专利摘要
本申请属于压缩机技术领域,特别是涉及一种摆动换向两级增压零余隙式离子液体压缩机。离子液体压缩机采用离子液体替代金属活塞在等温条件下产生高压,但现有的离子压缩机采用5级压缩、结构较为复杂、加工困难且造价昂贵,限制了加氢站的建设和发展。本申请提供了一种摆动换向两级增压零余隙式离子液体压缩机,包括相互连接的液压机构和气体增压机构;所述气体增压机构包括液压摆动组件,所述液压摆动组件与第一级气体增压组件连接,所述液压摆动组件与第二级气体增压组件连接;所述液压摆动组件通过换向组件与所述液压机构连接。结构简单、加工方便、控制精度高、能耗低、零余隙容积、通用性强、不污染氢气、低成本。
权利要求
1.一种摆动换向两级增压零余隙式离子液体压缩机,其特征在于:包括相互连接的液压机构和气体增压机构;
所述气体增压机构包括液压摆动组件,所述液压摆动组件与第一级气体增压组件连接,所述液压摆动组件与第二级气体增压组件连接;
所述液压摆动组件通过换向组件与所述液压机构连接。
2.如权利要求1所述的离子液体压缩机,其特征在于:所述第二级气体增压组件与气液分离组件连接,所述气液分离组件与高压气体存储组件连接。
3.如权利要求1或2所述的离子液体压缩机,其特征在于:所述液压机构包括液压油箱,所述液压油箱与第一液压管路连接,所述第一液压管路与液压过滤器连接,所述液压过滤器通过第二液压管路与液压泵连接,所述液压泵上设置有伺服电机,所述液压泵与第三液压管路连接,所述液压泵与第一进油液压管路连接,所述第三液压管路与溢流阀相连接,所述溢流阀通过第五液压管路与所述液压油箱连接,所述第一进油液压管路与所述换向组件相连通,所述换向组件与第一回油液压管路连接,所述第一回油液压管路通过液压冷却器与第二回油液压管路连接,所述第二回油液压管路与所述液压油箱连接。
4.如权利要求1所述的离子液体压缩机,其特征在于:所述液压摆动组件包括液压摆动缸体,所述液压摆动缸体内设置有异形活塞,所述液压摆动缸体一端设置有第一闭式压力传感器,所述液压摆动缸体另一端设置有第二闭式压力传感器,所述液压摆动缸体一端设置有第六液压管路,所述液压摆动缸体另一端设置有第七液压管路。
5.如权利要求4所述的离子液体压缩机,其特征在于:所述液压摆动缸体通过第一摆动式油管和第二摆动式油管相连通,所述液压摆动缸体一侧设置有第一摆动限位开关,所述液压摆动缸体另一侧设置有第二摆动限位开关。
6.如权利要求1所述的离子液体压缩机,其特征在于:所述第一级气体增压组件包括第一液压缸,所述第一液压缸与第一闭式液压系统管路连接,所述第一液压缸内设置有第一T型活塞,所述第一液压缸底部设置有第一磁致伸缩位移传感器,所述第一磁致伸缩位移传感器包括第一非接触式磁环,所述第一非接触式磁环设置于所述第一T型活塞底部,所述第一液压缸上设置有第一压力平衡清洁管道,所述第一压力平衡清洁管道与第一压力平衡清洁阀连接,所述第一液压缸上设置有第一支撑座,所述第一支撑座上设置有第一气体压缩缸,所述第一气体压缩缸内设置有第二T型活塞,所述第二T型活塞通过第一法兰与所述第一T型活塞连接,所述第二T型活塞与所述第一气体压缩缸之间形成第一隔离腔,所述第一隔离腔与第二压力平衡清洁管道连接,所述第二压力平衡清洁管道与第二压力平衡清洁阀连接,所述第一气体压缩缸上设置有第一离子液体单向注入阀,所述第一气体压缩缸上设置有第一气体进气阀,所述第一气体进气阀与第一气体进气管道连接,所述第一气体压缩缸上设置有第一压力液位复合传感器,所述第一气体压缩缸上设置有第一气体排气阀,所述第一气体排气阀与第一气体排气管道连接。
7.如权利要求1所述的离子液体压缩机,其特征在于:所述第二级气体增压组件包括与第二闭式液压系统管路连接的第二液压缸,所述第二液压缸内设置有第三T型活塞,所述第二液压缸底部设置有第二磁致伸缩位移传感器,所述第二磁致伸缩位移传感器包括第二非接触式磁环,所述第二非接触式磁环设置于所述第三T型活塞底部;所述第二液压缸上设置有第三压力平衡清洁管道,所述第三压力平衡清洁管道与第三压力平衡清洁阀连接,所述第二液压缸上设置有第二支撑座,所述第二支撑座上设置有第二气体压缩缸,所述第二气体压缩缸内设置有第四T型活塞,所述第四T型活塞通过第二法兰与所述第三T型活塞连接,所述第二气体压缩缸与第四T型活塞之间形成第二隔离腔,所述第二隔离腔与第四压力平衡清洁管道连接,所述第四压力平衡清洁管道与第四压力平衡清洁阀连接;所述第二气体压缩缸上设置有第二离子液体单向注入阀,所述第二气体压缩缸上设置有第二气体进气阀,所述第二气体进气阀与第一气体排气管道连接,所述第二气体压缩缸上设置有第二压力液位复合传感器,所述第二气体压缩缸上设置有第二气体排气阀,所述第二气体排气阀与第二气体排气管道连接。
8.如权利要求1所述的离子液体压缩机,其特征在于:所述气液分离组件包括第三气体进气阀,所述第三气体进气阀与第二气体排气管道连通,所述第三气体进气阀设置于气液分离筒体上,所述气液分离筒体内设置有液体过滤构件,所述气液分离筒体上设置有第三气体排气阀,所述第三气体排气阀与第三气体排气管道连通,所述第三气体排气管道与高压气体用户端连通,所述气液分离筒体上设置有压力传感器,所述气液分离筒体上设置有离子液位传感器,所述气液分离筒体底部经过第一离子液体管道、截止阀及第二离子液体管道与离子液体收集构件连通。
9.如权利要求1~8中任一项所述的离子液体压缩机,其特征在于:所述换向组件为三位四通电磁比例换向阀。
说明书
技术领域
本申请属于压缩机技术领域,特别是涉及一种摆动换向两级增压零余隙式离子液体压缩机。
背景技术
氢气因其燃烧只生成水,且来源丰富,被誉为是本世纪最具发展潜力的清洁能源,以氢气为能源的燃料电池汽车具有环保、高效、零污染、零排放等优点,受到各国越来越多的关注。所以,作为燃料电池汽车氢能源供应的保障,加氢站的建设显得尤为重要。然而就目前而言,加氢站的数量尚难以形成供气网络,其供应能力也成为燃料电池汽车推广的瓶颈之一。
加氢站与现有较为成熟的压缩天然气(CNG)加气站相似,主要包括卸气柱、压缩机、储氢罐、加氢机、管道、控制系统、氮气吹扫装置、放散装置以及安全监控装置等,其中压缩机是加氢站的核心设备之一。目前加氢站使用的压缩机主要有往复活塞压缩机、隔膜式压缩机和离子液体压缩机三种。往复活塞压缩机主要通过曲柄联杆曲柄连杆带动活塞做往复运动来实现氢气压缩,其具有技术成熟、系统结构简单等优点,但其活塞往复运动的过程中会对氢气会造成污染,导致运行及维护费用较高;隔膜式压缩机因无需润滑油润滑,从而能够获得满足燃料电池汽车纯度要求的高压氢气。但隔膜式压缩机在压缩过程中需要采用空气冷却或液体冷却的方式进行降温,其冷却系统较为复杂,技术难度高于常规压缩机。此外,隔膜式压缩机的容积流量较低,且用于氢气压缩的隔膜式压缩机对于膜片的质量要求高,导致了加工成本的升高。
离子液体压缩机采用离子液体替代金属活塞在等温条件下产生高压,能长期服役而无需维护,从而节省20%的能耗。但现有的离子压缩机采用5级压缩、结构较为复杂、加工困难且造价昂贵,限制了加氢站的建设和发展。
发明内容
1.要解决的技术问题
基于离子液体压缩机采用离子液体替代金属活塞在等温条件下产生高压,能长期服役而无需维护,从而节省20%的能耗。但现有的离子压缩机采用5级压缩、结构较为复杂、加工困难且造价昂贵,限制了加氢站的建设和发展的问题,本申请提供了摆动换向两级增压零余隙式离子液体压缩机。
2.技术方案
为了达到上述的目的,本申请提供了一种摆动换向两级增压零余隙式离子液体压缩机,包括相互连接的液压机构和气体增压机构;
所述气体增压机构包括液压摆动组件,所述液压摆动组件与第一级气体增压组件连接,所述液压摆动组件与第二级气体增压组件连接;
所述液压摆动组件通过换向组件与所述液压机构连接。
本申请提供的另一种实施方式为:所述第二级气体增压组件与气液分离组件连接,所述气液分离组件与高压气体存储组件连接。
本申请提供的另一种实施方式为:所述液压机构包括液压油箱,所述液压油箱与第一液压管路连接,所述第一液压管路与液压过滤器连接,所述液压过滤器通过第二液压管路与液压泵连接,所述液压泵上设置有伺服电机,所述液压泵与第三液压管路连接,所述液压泵与第一进油液压管路连接,所述第三液压管路与溢流阀相连接,所述溢流阀通过第五液压管路与所述液压油箱连接,所述第一进油液压管路与所述换向组件相连通,所述换向组件与第一回油液压管路连接,所述第一回油液压管路通过液压冷却器与第二回油液压管路连接,所述第二回油液压管路与所述液压油箱连接。
本申请提供的另一种实施方式为:所述液压摆动组件包括液压摆动缸体,所述液压摆动缸体内设置有异形活塞,所述液压摆动缸体一端设置有第一闭式压力传感器,所述液压摆动缸体另一端设置有第二闭式压力传感器,所述液压摆动缸体一端设置有第六液压管路,所述液压摆动缸体另一端设置有第七液压管路。
本申请提供的另一种实施方式为:所述液压摆动缸体通过第一摆动式油管和第二摆动式油管相连通,所述液压摆动缸体一侧设置有第一摆动限位开关,所述液压摆动缸体另一侧设置有第二摆动限位开关。
本申请提供的另一种实施方式为:所述第一级气体增压组件包括第一液压缸,所述第一液压缸与第一闭式液压系统管路连接,所述第一液压缸内设置有第一T型活塞,所述第一液压缸底部设置有第一磁致伸缩位移传感器,所述第一磁致伸缩位移传感器包括第一非接触式磁环,所述第一非接触式磁环设置于所述第一T型活塞底部,所述第一液压缸上设置有第一压力平衡清洁管道,所述第一压力平衡清洁管道与第一压力平衡清洁阀连接,所述第一液压缸上设置有第一支撑座,所述第一支撑座上设置有第一气体压缩缸,所述第一气体压缩缸内设置有第二T型活塞,所述第二T型活塞通过第一法兰与所述第一T型活塞连接,所述第二T型活塞与所述第一气体压缩缸之间形成第一隔离腔,所述第一隔离腔与第二压力平衡清洁管道连接,所述第二压力平衡清洁管道与第二压力平衡清洁阀连接,所述第一气体压缩缸上设置有第一离子液体单向注入阀,所述第一气体压缩缸上设置有第一气体进气阀,所述第一气体进气阀与第一气体进气管道连接,所述第一气体压缩缸上设置有第一压力液位复合传感器,所述第一气体压缩缸上设置有第一气体排气阀,所述第一气体排气阀与第一气体排气管道连接。
本申请提供的另一种实施方式为:所述第二级气体增压组件包括与第二闭式液压系统管路连接的第二液压缸,所述第二液压缸内设置有第三T型活塞,所述第二液压缸底部设置有第二磁致伸缩位移传感器,所述第二磁致伸缩位移传感器包括第二非接触式磁环,所述第二非接触式磁环设置于所述第三T型活塞底部;所述第二液压缸上设置有第三压力平衡清洁管道,所述第三压力平衡清洁管道与第三压力平衡清洁阀连接,所述第二液压缸上设置有第二支撑座,所述第二支撑座上设置有第二气体压缩缸,所述第二气体压缩缸内设置有第四T型活塞,所述第四T型活塞通过第二法兰与所述第三T型活塞连接,所述第二气体压缩缸与第四T型活塞之间形成第二隔离腔,所述第二隔离腔与第四压力平衡清洁管道连接,所述第四压力平衡清洁管道与第四压力平衡清洁阀连接;所述第二气体压缩缸上设置有第二离子液体单向注入阀,所述第二气体压缩缸上设置有第二气体进气阀,所述第二气体进气阀与第一气体排气管道连接,所述第二气体压缩缸上设置有第二压力液位复合传感器,所述第二气体压缩缸上设置有第二气体排气阀,所述第二气体排气阀与第二气体排气管道连接。
本申请提供的另一种实施方式为:所述气液分离组件包括第三气体进气阀,所述第三气体进气阀与第二气体排气管道连通,所述第三气体进气阀设置于气液分离筒体上,所述气液分离筒体内设置有液体过滤构件,所述气液分离筒体上设置有第三气体排气阀,所述第三气体排气阀与第三气体排气管道连通,所述第三气体排气管道与高压气体用户端连通,所述气液分离筒体上设置有压力传感器,所述气液分离筒体上设置有离子液位传感器,所述气液分离筒体底部经过第一离子液体管道、截止阀及第二离子液体管道与离子液体收集构件连通。
本申请提供的另一种实施方式为:所述换向组件为三位四通电磁比例换向阀。
3.有益效果
与现有技术相比,本申请提供的离子液体压缩机的有益效果在于:
本申请提供的离子液体压缩机,能够实现加氢站对低压氢气(L-H2)高效增压的要求,且具有结构简单、加工方便、控制精度高、能耗低、零余隙容积、通用性强、不污染氢气、低成本等优势。
本申请提供的离子液体压缩机,分别采用第一磁致伸缩位移传感器及第二磁致伸缩位移传感器来测量第一液压缸及第二液压缸的第一T型活塞及第三T型活塞的位移,从而精确控制第二T型活塞及第四T型活塞的位移,进一步精确控制第一级氢气增压组件及第二级氢气增压组件压缩工作过程中第一离子液体及第二离子液体的液面高度,从而实现压缩过程的零余隙容积,提高压缩机工作效率。此外,磁致伸缩位移传感器具有非接触测量、精度高、重复性好、可靠稳定等特点,所以该压缩机能够实现活塞行程的精准控制。
本申请提供的离子液体压缩机,可通过第一磁致伸缩位移传感器、第二磁致伸缩位移传感器、第一压力液位复合传感器、第二压力液位复合传感器、离子液位传感器、伺服电机、三位四通电磁比例换向阀及相应硬件系统组成“闭环控制系统”,从而准确调整第一T型活塞及第三T型活塞的位移来保证该压缩机的零余隙容积运行。
本申请提供的离子液体压缩机,由于该一种摆动换向两级增压零余隙式离子液体压缩机能够实现低压氢气的二级高效增压,在使用过程中可根据需要调整第二T型活塞及第四T型活塞的直径比从而实现不同级别的氢气增压效果。
附图说明
图1是本申请的离子液体压缩机结构示意图;
图2是本申请液压机构详细的结构示意图;
图3是本申请液压摆动组件结构示意图;
图4是本申请第一级氢气增压组件结构示意图;
图5是本申请第二级氢气增压组件结构示意图;
图6是本申请气液分离组件结构示意图;
图中:1-液压机构,2-换向组件,3-液压摆动组件,4-第一级气体增压组件,5-第二级气体增压组件,6-气液分离组件,7-高压气体存储组件,101-液压油箱,102-第一液压管路,103-液压过滤器,104-第二液压管路,105-液压泵,106-伺服电机,107-第三液压管路,108-第一进油液压管路,109-溢流阀,110-第五液压管路,111-第一回油液压管路,112-液压冷却器,113-第二回油液压管路,301-第一摆动式油管,302-第二摆动式油管,303-液压摆动缸体,304-异形活塞,305-第一摆动式液压油,306-第二摆动式液压油,307-第一闭式压力传感器,308-第二闭式压力传感器,309-第一摆动限位开关,310-第二摆动限位开关,311-第六液压管路,312-第七液压管路,401-第一液压缸,402-第一T型活塞,403-第一液压缸下油腔,404-第一液压缸上油腔,405-第一磁致伸缩位移传感器,406-第一非接触式磁环,407-第一压力平衡清洁管道,408-第一压力平衡清洁阀,409-第一支撑座,410-第一气体压缩缸,411-第二T型活塞,412-第一法兰,413-第一隔离腔,414-第二压力平衡清洁管道,415-第二压力平衡清洁阀,416-第一离子液体,417-第一级气体压缩腔,418-第一离子液体单向注入阀,419-第一气体进气阀,420-低压气体,421-第一气体进气管道,422-第一压力液位复合传感器,423-第一气体排气阀,424-第一气体排气管道,501-第二液压缸,502-第三T型活塞,503-第二液压缸下油腔,504-第二液压缸上油腔,505-第二磁致伸缩位移传感器,506-第二非接触式磁环,507-第三压力平衡清洁管道,508-第三压力平衡清洁阀,509-第二支撑座,510-第二气体压缩缸,511-第四T型活塞,512-第二法兰,513-第二隔离腔,514-第四压力平衡清洁管道,515-第四压力平衡清洁阀,516-第二离子液体,517-第二级气体压缩腔,518-第二离子液体单向注入阀,519-第二气体进气阀,520-第二压力液位复合传感器,521-第二气体排气阀,522-第二气体排气管道,601-第三气体进气阀,602-气液分离筒体,603-液体过滤构件,604-高压气体,605-第三气体排气阀,606-第三气体排气管道,607-压力传感器,608-第三离子液体,609-离子液位传感器,610-第一离子液体管道,611-截止阀,612-第二离子液体管道,613-离子液体收集构件,614-第四离子液体。
具体实施方式
在下文中,将参考附图对本申请的具体实施例进行详细地描述,依照这些详细的描述,所属领域技术人员能够清楚地理解本申请,并能够实施本申请。在不违背本申请原理的情况下,各个不同的实施例中的特征可以进行组合以获得新的实施方式,或者替代某些实施例中的某些特征,获得其它优选的实施方式。
离子液体压缩机由林德公司(Linde)首先提出,并与全球第三大汽车生产商戴姆勒克莱斯勒公司(Daimler Chrysler AG)合作研发成功。例如,林德公司(Linde)开发的一种5级离子压缩机,活塞以液压方式上下移动,在活塞的顶部存在离子液体,离子液体不与气体结合,其通过压缩机气缸作为液体活塞与氢气一起被压缩。
参见图1~6,本申请提供一种摆动换向两级增压零余隙式离子液体压缩机,包括相互连接的液压机构1和气体增压机构;
所述气体增压机构包括液压摆动组件3,所述液压摆动组件3与第一级气体增压组件4连接,所述液压摆动组件与第二级气体增压组件5连接;
所述液压摆动组件3通过换向组件2与所述液压机构1连接。
当开始工作时,先开启液压机构1,通过控制换向组件2进而控制液压摆动组件3的进行左右摆动工作,在液压摆动组件3左右摆动的作用下可依次实现从第一级气体增压组件4的吸气、压缩、排气工况到第二级气体增压组件5的吸气、压缩、排气工况的循环往复工作,即可实现气体的二级增压过程。
进一步地,所述第二级气体增压组件5与气液分离组件6连接,所述气液分离组件6与高压气体存储组件7连接。
进一步地,所述液压机构1包括液压油箱101,液压油箱101上连接有第一液压管路102,第一液压管路102上连接有液压过滤器103,液压过滤器103经过第二液压管路104后与液压泵105的入口油路连接,液压泵105上安装有伺服电机106,液压泵105的出口油路分别连接有第三液压管路107与第一进油液压管路108,第三液压管路107与溢流阀109相连接,溢流阀109经过第五液压管路110后与液压油箱101相连。第一进油液压管路108与三位四通电磁比例换向阀2相连通。三位四通电磁比例换向阀2上连接有第一回油液压管路111,第一回油液压管路111经过液压冷却器112后与第二回油液压管路113相连,第二回油液压管路113与液压油箱101相连。
进一步地,所述液压摆动组件3包括液压摆动缸体303,液压摆动缸体303内部配合安装有异形活塞304,液压摆动缸体303与异形活塞304两侧的密封腔中分别充满左摆动式液压油305及右摆动式液压油306液压摆动缸体303的左、右两端分别安装有第一闭式压力传感器307及第二闭式压力传感器308,左摆动限位开关309及右摆动限位开关310分别固定在液压摆动缸体303上端的两侧。第六液压管路311及第七液压管路312分别固定安装在液压摆动缸体303的两端。
进一步地,所述液压摆动缸体303通过第一摆动式油管301和第二摆动式油管302相连通,所述液压摆动缸体303一侧设置有第一摆动限位开关309,所述液压摆动缸体303另一侧设置有第二摆动限位开关310。
进一步地,所述第一级气体增压组件4包括与第一闭式液压系统管路306相连接的第一液压缸401,第一液压缸401内部配合安装有第一T型活塞402,第一T型活塞402与第一液压缸401分别形成第一液压缸下油腔403与第一液压缸上油腔404,第一液压缸下油腔403内部充满第一闭式系统液压油308。第一液压缸401的底部安装有第一磁致伸缩位移传感器405,第一磁致伸缩位移传感器405上的第一非接触式磁环406配合安装在第一T型活塞402的底部。第一液压缸401的右上侧安装第一压力平衡清洁管道407,第一压力平衡清洁管道407与第一压力平衡清洁阀408固连。第一支撑座409固定安装在第一液压缸401的上端,第一支撑座409上配合安装有带散热翅片的第一气体压缩缸410,带散热翅片的第一气体压缩缸410内配合安装有第二T型活塞411,第二T型活塞411通过第一法兰412与第一T型活塞402固连在一起,第二T型活塞411与带散热翅片的第一气体压缩缸410之间形成第一隔离腔413,第一隔离腔413下端连接有第二压力平衡清洁管道414,第二压力平衡清洁管道414与第二压力平衡清洁阀415固连。第二T型活塞411上侧为第一离子液体416,第一离子液体416上侧为第一级气体压缩腔417,第一离子液体单向注入阀418及第一气体进气阀419分别固定安装在带散热翅片的第一气体压缩缸410的左上侧,第一气体进气阀419上连接有可供低压气体420流通的第一气体进气管道421。第一压力液位复合传感器422及第一气体排气阀423分别固定安装在带散热翅片的第一气体压缩缸410的右上侧,第一气体排气阀423上连接有第一气体排气管道424。
进一步地,所述第二级气体增压组件5包括与第二闭式液压系统管路307相连接的第二液压缸501,第二液压缸501内部配合安装有第三T型活塞502,第三T型活塞502与第二液压缸501分别形成第二液压缸下油腔503与第二液压缸上油腔504,第二液压缸下油腔503内部充满第二闭式系统液压油309。第二液压缸501的底部安装有第二磁致伸缩位移传感器505,第二磁致伸缩位移传感器505上的第二非接触式磁环506配合安装在第二T型活塞502的底部。第二液压缸501的右上侧安装第三压力平衡清洁管道507,第三压力平衡清洁管道507与第三压力平衡清洁阀508固连。第二支撑座509固定安装在第二液压缸501的上端,第二支撑座509上配合安装有带散热翅片的第二气体压缩510,带散热翅片的第二气体压缩缸510内配合安装有第四T型活塞511,第四T型活塞511通过第二法兰512与第三T型活塞502固连在一起,第四T型活塞511与带散热翅片的第二气体压缩缸510之间形成第二隔离腔513,第二隔离腔513下端连接有第四压力平衡清洁管道514,第四压力平衡清洁管道514与第四压力平衡清洁阀515固连。第四T型活塞511上侧为第二离子液体516,第二离子液体516上侧为第二级气体压缩腔517,第二离子液体单向注入阀518及第二气体进气阀519分别固定安装在带散热翅片的第二气体压缩缸510的左上侧,第二气体进气阀519上连接有第一气体排气管道424。第二压力液位复合传感器520及第二气体排气阀521分别固定安装在带散热翅片的第二气体压缩缸510的右上侧,第二气体排气阀521上连接有第二气体排气管道522。
进一步地,所述气液分离组件6包括与第二气体排气管道523连通的第三气体进气阀601,第三气体进气阀601固定安装在气液分离筒体602上,气液分离筒体602内部安装有液体过滤组件603,液体过滤组件603外侧为高压气体604,第三气体排气阀605安装在气液分离筒体602的右上端,第三气体排气管道606分别连通第三气体排气阀605及高压气体用户端7。气液分离筒体602的右侧分别固定安装有压力传感器607及用于测量过滤后的第三离子液体608液位高度的离子液位传感器609。气液分离筒体602底部经过第一离子液体管道610、截止阀611及第二离子液体管道612后与离子液体收集构件613连通,离子液体收集构件613内部存储有补给用的第四离子液体614。
进一步地,所述换向组件2为三位四通电磁比例换向阀。
本申请的工作原理为:
(1)该压缩机的第一级气体增压组件4吸气以及该压缩机的第二级气体增压组件5进行压缩、排气过程的工作原理具体如下:
启动伺服电机106带动液压泵105开始工作,则本发明的液压系统1开始工作,液压系统1在溢流阀109的作用下能够将液压系统稳定在30MPa,控制三位四通电磁比例换向阀2开启右侧控制位,则液压系统1的液压油经过第一进油液压管路108、右摆动式油管301后进入液压摆动缸体303推动异形活塞304向右运动,左摆动式液压油305从第一液压缸下油腔403流出,则第一T型活塞402向下运动,第二T型活塞411及第一离子液体416开始向下运动。当第一级气体压缩腔417内压力低于第一气体进气阀419的背压时,第一气体进气阀419开启,则低压气体420可被吸入带散热翅片的第一气体压缩缸410内部的第一级气体压缩腔417。
在液压系统1的液压油经过第一进油液压管路108、右摆动式油管301后进入液压摆动缸体303推动异形活塞304向右运动,第一T型活塞402向下运动的同时,右摆动式液压油306经过第七液压管路312被压入第二液压缸下油腔503,所以推动第三T型活塞502向上运动,第四T型活塞511及第二离子液体516开始向上运动。则从第一气体排气管道424进入第二级气体压缩腔517的经过第一级气体增压组件4压缩后的低压气体420将再次被压缩,从而完成第二级压缩。第二级气体压缩腔517内压力高于第二气体排气阀521的背压时,第二气体排气阀521开启,则压缩后获得的高压气体将通过第二气体排气阀521进入第二气体排气管道522。
(2)该压缩机的第一级气体增压组件4压缩、排气及该压缩机的第二级气体增压组件5进行吸气过程的工作原理具体如下:
控制三位四通电磁比例换向阀即换向组件2开启左侧控制位,则液压系统1的液压油经过第一进油液压管路108、左摆动式油管302后进入液压摆动缸体303推动异形活塞304向左运动,左摆动式液压油305被挤压进入第一液压缸下油腔403推动第一T型活塞402向上运动,第二T型活塞411及第一离子液体416开始向上运动对吸入的低压气体420进行压缩。当第一级气体压缩腔417内压力高于第一气体排气阀423的背压时,第一气体排气阀423开启,则经过第一级气体增压组件4压缩后的低压气体420将通过第一气体排气阀423进入第一气体排气管道424。
在液压系统1的液压油经过第一进油液压管路108、左摆动式油管302后进入液压摆动缸体303推动异形活塞304向左运动,第一T型活塞402向上运动的同时,右摆动式液压油306经过第七液压管路312被吸走,所以带动第三T型活塞502向下运动,第四T型活塞511及第二离子液体516开始向下运动。则从第一气体排气管道424进入第二级气体压缩腔517的经过第一级气体增压组件4压缩后的低压气体420将被吸入第二级气体压缩腔517,从而完成第二级气体增压组件5的吸气过程。
工作过程中,尽管气体的排气会携带部分离子液体而导致第一气体压缩缸410及第二气体压缩缸510内部的第一离子液体416及第二离子液体516的液面高度有所降低,但携带的部分第一离子液体416及第二离子液体516可在气液分离组件6作用下获得过滤后的第三离子液体608,且可通过离子液位传感器609检测过滤后的第三离子液体608的总的液量,此外可分别通过第一压力液位复合传感器422及第二压力液位复合传感器521实时监测第一离子液体416及第二离子液体516的液位高度。
本申请中的气体主要指氢气。
尽管在上文中参考特定的实施例对本申请进行了描述,但是所属领域技术人员应当理解,在本申请公开的原理和范围内,可以针对本申请公开的配置和细节做出许多修改。本申请的保护范围由所附的权利要求来确定,并且权利要求意在涵盖权利要求中技术特征的等同物文字意义或范围所包含的全部修改。
一种摆动换向两级增压零余隙式离子液体压缩机专利购买费用说明
Q:办理专利转让的流程及所需资料
A:专利权人变更需要办理著录项目变更手续,有代理机构的,变更手续应当由代理机构办理。
1:专利变更应当使用专利局统一制作的“著录项目变更申报书”提出。
2:按规定缴纳著录项目变更手续费。
3:同时提交相关证明文件原件。
4:专利权转移的,变更后的专利权人委托新专利代理机构的,应当提交变更后的全体专利申请人签字或者盖章的委托书。
Q:专利著录项目变更费用如何缴交
A:(1)直接到国家知识产权局受理大厅收费窗口缴纳,(2)通过代办处缴纳,(3)通过邮局或者银行汇款,更多缴纳方式
Q:专利转让变更,多久能出结果
A:著录项目变更请求书递交后,一般1-2个月左右就会收到通知,国家知识产权局会下达《转让手续合格通知书》。
动态评分
0.0