专利摘要
该发明公开了一种基于COMSOLMultiphysics的3维十字型霍尔器灵敏度计算方法,涉及微电子学与固体电子学领域,特别涉及霍尔传感器。从不同结构对于水平型霍尔传感器灵敏度存在不同影响的角度考虑,通过3维COMSOL模型进行仿真对比0μm至38μm不同叉指长度下相应的霍尔器件模型电压相关灵敏度,提出一款拥有较高灵敏度的水平霍尔传感器,其特征在于所述霍尔器件为90°旋转对称的十字型结构,传感器尺寸的上下和左右宽度为80μm,厚度为5μm,有源区采用硅材料2.6E+16cm‑3的N阱掺杂CMOS工艺,叉指长度为18μm时,即霍尔传感器宽长比为0.55时,能得到最佳的0.0652V/(VT)电压相关灵敏度;相较于传统的霍尔片模型得到了灵敏度的提升。
权利要求
1.一种基于COMSOL Multiphysics的3维十字型霍尔器灵敏度计算方法,该方法包括以下步骤:
步骤1:在COMSOL Multiphysics平台下构建3维十字型霍尔片模型;
步骤2:在COMSOL Multiphysics中选择构建“三维”模型,物理场选择“AC/DC”模块中的“电流”模块,再选择“稳态”研究;
步骤3:在COMSOL Multiphysics“全局定义”中添加霍尔片尺寸参数、掺杂浓度参数、磁场强度参数以及材料各项异性电导率参数;
步骤4:仿真方法中,外界磁场对霍尔传感器的影响,即器件的霍尔效应由下式所表示的各向异性电导率进行计算:
其中:
σ
σ
其中,J
步骤5:在COMSOL Multiphysics“电流”物理场新建电流守恒域条件,会得到“电流守恒2”域条件,条件所施加“域”选择为霍尔片有源区所在域,材料类型为“固体”,在“传导电流”选项中将电导率定义为各向异性,并填入步骤4中所提及各向异性电导率表达式;
步骤6:在COMSOL Multiphysics“ec”物理场中添加“终端”边界条件,为相对两终端添加霍尔片偏置条件,另外相对两终端添加“悬浮电位”边界条件;
步骤7:在COMSOL Multiphysics中加入“参数化扫描”研究,对霍尔片进行叉指长度从2μm至38μm长度变化的不同结构进行仿真以及对性能差异进行计算和比较;
步骤8:在COMSOL Multiphysics中通过“探针”得到霍尔电压值,并在结果中添加“全局评估”,采用电压相关灵敏度定义式
说明书
技术领域
本发明涉及微电子学与固体电子学领域,特别涉及霍尔传感器。
背景技术
随着电子技术的不断进步以及各类产品的智能化发展趋势越来越明显,传感器技术的应用 在如今的科技发展过程中扮演了不可替代的角色。传感器能够对外界环境信号进行探测,将所 期望测量的信号,如声信号、光信号、磁信号等转换为相应的其他类型信号,通常是以电信号 的形式作为输出信号。磁性传感器作为传感器领域中极其重要的一类,有着非常广泛的应用, 并在诸如工业、医疗、汽车、消费电子等诸多行业中发挥着极其重要的作用。霍尔传感器作为 历史最为悠久的磁性传感器,尽管近年来市场份额受到多种类型的新兴传感技术的冲击,但由 于其稳定性好、集成度高和成本低等优势,目前仍拥有着最高的市场占有率。霍尔效应传感器 基于1879年由科学家霍尔发现的霍尔效应的原理,即当通电半导体受到垂直于电流方向的外 界磁场时,半导体内载流子会受到洛仑兹力的作用而使运动轨迹发生偏移,并形成垂直于电流 方向的附加电场,最终载流子受到的洛仑兹力与电场力将达到平衡状态,而此时在半导体两侧 形成的稳定电势差即为霍尔电压。利用霍尔效应所发明的霍尔传感器可以将外磁场信号转换为 相应的电压或电流信号。对于水平霍尔器件,电压相关灵敏度Sv表示器件产生霍尔效应的强 弱,定义为在单位偏置电压Vbias和单位外加磁感应强度Bz条件下,器件能产生的霍尔电压VHall大小,即:
如今对于霍尔效应传感器的研究已经拥有很长时间的积累,在商业领域也已经有了多种较 为成熟的应用,而霍尔传感器的研究仍在不断向着更高灵敏度、更小体积、更低功耗的方向继 续发展。传统的霍尔效应传感器通常分为水平型霍尔传感器和垂直型霍尔传感器两类,相较于 垂直型霍尔传感器而言,水平型霍尔传感器受到了更为广泛的使用。
文献[Sen M,Balabozov I,Yatchev I,et al.Modelling of current sensorbased on hall effect[C] IEEE 15th International Conference on ElectricalMachines,Drives and Power Systems(ELMA), 2017.]在COMSOL Multiphysics中对长方体结构的电压型水平霍尔传感器进行了2维模型的构 建,在5V偏置电压和1T垂直外界磁场条件下得到了0.29V的霍尔电压,即代表0.058V/(VT) 的电压相关灵敏度。
发明内容
本发明技术方案为一种水平十字型霍尔传感器有限元仿真方法,主要针对于从实际设计制 造到测试霍尔传感器时所需耗费的较大成本和时间,基于COMSOL Multiphysics平台提出一种 水平霍尔传感器的3维有限元仿真模型。相较于传统的2维COMSOL模型,该发明所提出的 3维传感器模型可以实现更复杂传感器结构的设计和更精确的性能仿真,此外,3维传感器模 型可进一步用于更复杂传感系统的模型搭建,并为诸如力学等多个物理场的联合仿真提供了更 大的空间。该3维有限元仿真方法可用于针对传感器具体设计参数进行对比仿真分析,从而选 取性能较佳的传感器参数。
本发明技术方案为一种基于COMSOL Multiphysics的3维十字型霍尔器灵敏度计算方法, 该方法包括以下步骤:
步骤1:在COMSOL Multiphysics平台下构建3维十字型霍尔片模型;
步骤2:在COMSOL Multiphysics中选择构建“三维”模型,物理场选择“AC/DC”模块中的“电流”模块,再选择“稳态”研究;
步骤3:在COMSOL Multiphysics“全局定义”中添加霍尔片尺寸参数、掺杂浓度参数、 磁场强度参数以及材料各项异性电导率参数;
步骤4:仿真方法中,外界磁场对霍尔传感器的影响,即器件的霍尔效应由下式所表示的 各向异性电导率进行计算:
其中:
σXZ=σYZ=σZX=σZY=0
σZZ=σ0
其中,JX、JY、JZ表示X、Y、Z方向上的传导电流密度,EX、EY、EZ表示X、Y、Z 方向上的电场强度,σ0表示N阱有源区电导率,RH表示霍尔因子,BZ表示垂直于器件方向 磁感应强度;
步骤5:在COMSOL Multiphysics“电流”物理场新建电流守恒域条件,会得到“电流守 恒2”域条件,条件所施加“域”选择为霍尔片有源区所在域,材料类型为“固体”,在“传导电流”选项中将电导率定义为各向异性,并填入步骤4中所提及各向异性电导率表达式;
步骤6:在COMSOL Multiphysics“ec”物理场中添加“终端”边界条件,为相对两终端 添加霍尔片偏置条件,另外两相对终端添加“悬浮电位”边界条件;
步骤7:在COMSOL Multiphysics中加入“参数化扫描”研究,对霍尔片进行叉指长度从 2μm至38μm长度变化的不同结构进行仿真以及对性能差异进行计算和比较;
步骤8:在COMSOL Multiphysics中通过“探针”得到霍尔电压值,并在结果中添加“全 局评估”,采用电压相关灵敏度定义式 计算霍尔传感器电压相关灵敏度;其中VHall即 为仿真测量所得霍尔电压,Vbias代表霍尔传感器偏置接触极所施加的偏置电压,Bz代表霍尔传 感器所受到的磁感应强度。
由于灵敏度是传感器的最重要性能指标之一,本发明从不同结构对于水平型霍尔传感器灵 敏度存在不同影响的角度考虑,通过3维COMSOL模型进行仿真对比0μm至38μm不同叉指 长度下相应的霍尔器件模型电压相关灵敏度,提出一款拥有较高灵敏度的水平霍尔传感器,其 特征在于所述霍尔器件为90°旋转对称的十字型结构,传感器尺寸的上下和左右宽度为80μm, 厚度为5μm,有源区采用硅材料2.6E+16cm
附图说明
图1为本发明实施例中3维水平霍尔传感器的几何模型示意图;
图2为本发明实施例中3维水平霍尔传感器的电势分布图。其中,图中箭头方向指的是霍 尔片工作时施加的5V偏置电压,Vo1和Vo2指的是测量接触极所测得输出电压,Vo1和Vo2的 电势差即为霍尔电压。
图3为本发明实施例中对不同叉指长度进行仿真过程中3维水平霍尔传感器两个测量接触 极所测电势变化曲线图,其中横坐标轴alpha代表模型叉指长度,纵坐标轴代表在测量接触极 上检测到的电压,
图4为本发明实施例中叉指长度改变过程中3维水平霍尔传感器电压相关灵敏度变化曲线 图,其中横坐标轴alpha代表模型叉指长度,纵坐标轴代表所测霍尔传感器电压相关灵敏度, 分析结果,本发明的叉指长度18μm时,达到最大电压相关灵敏度0.0652V/(VT),此时该霍 尔片结构宽长比为0.55。
图5为本发明中3维水平霍尔传感器的测量系统信号处理电路模块结构图。主要包括:霍 尔器件、电流旋转电路、斩波电路、差分放大电路、滤波电路;以实现对霍尔信号的消噪、放 大处理。
具体实施方式
下面结合附图及实施例对本发明进行详细说明。
对霍尔片模型选择2.6E+16cm-3的N阱掺杂工艺的材料属性。N型掺杂比P型掺杂有着 更高的迁移率,从而导致更高的传感器灵敏度;更低的掺杂浓度通常会得到更高的传感器灵敏 度,并且掺杂浓度需与工艺水平相结合,因此综合考虑选择浓度为2.6E+16cm-3的N型掺杂。
在COMSOL Multiphysics平台下为传感器模型设置模型具体物理属性和边界条件,将传感 器的测量接触极一端接地,另一端接入5V电势作为偏置电压。由此可在另外两个测量接触极 测得相应霍尔电势差,并可进一步根据传感器电压相关灵敏度定义式 计算出传感器 灵敏度。
十字型霍尔传感器结构相较于长方体型结构有着更高的结构因子G。对于电压偏置的霍尔 器件的灵敏度有:
其中μH为霍尔迁移率,而结构因子G受霍尔器件宽长比所影响,在 范围内 有:
综合上述两式所得电压相关灵敏度:
由此根据数学极值推导理论,对于一定尺寸下的电压偏置十字型霍尔器件,存在最佳的长 宽比使器件拥有较高的电压相关灵敏度。
本发明采用的一种基于COMSOL Multiphysics的3维水平型霍尔器件模拟实验方法,包括 以下步骤:
步骤1:霍尔器件的尺寸与应用场景要求相结合,更小尺寸的霍尔器件受到工作温度以及 制造过程中引入的失调误差影响较大,而更大尺寸的霍尔器件降低温度漂移对器件的影响的同 时,会增加芯片体积和成本。综合考虑,在COMSOL Multiphysics平台下构建尺寸为80μm的 十字型霍尔片3维模型作为示例;
步骤2:器件材料中掺杂浓度的降低将导致霍尔电流相关灵敏度 的提升,式中G为 几何因子,q为电子电荷量,t为霍尔片有源区有效厚度。但是降低浓度的同时需综合考虑相 关Foundry制造工艺等限制因素,因此在该发明仿真方法示例中对霍尔片模型选择硅材料 2.6E+16cm
步骤3:在COMSOL Multiphysics中选择构建“三维”模型,物理场选择“AC/DC”模块中的“电流(ec)”模块,再选择“稳态”研究;
步骤4:在COMSOL Multiphysics“全局定义”中添加霍尔片尺寸参数、掺杂浓度参数、 磁场强度参数以及材料各项异性电导率参数;
步骤5:在COMSOL Multiphysics几何中构建预设计的霍尔片结构模型,通过3维模型可 以实现更复杂模型的搭建,如附图1所示;
步骤6:在COMSOL Multiphysics“电流(ec)”物理场新建电流守恒域条件,会得到“电 流守恒2”域条件,条件所施加“域”选择为霍尔片有源区所在域,材料类型为“固体”,在“传导电流”中将电导率定义为各向异性,并由下式所表示的各向异性电导率进行模拟计算:
其中:
σXZ=σYZ=σZX=σZY=0
σZZ=σ0
其中,JX、JY、JZ表示传导电流密度,EX、EY、EZ表示电场强度,σ0表示N阱有源 区电导率,RH表示霍尔因子,BZ表示垂直于器件方向磁感应强度;
在“全局定义”-“参数”中根据上式填入σXX、σXY、σXZ、σYX、σYY、σYZ、σZX、σZY、 σZZ。在“电流守恒2”域条件下的“传导电流”中,向各向异性电导率数据框中填入:
步骤7:为该3维模型边界条件。在COMSOL Multiphysics“ec”物理场中添加“终端”边界条件,为相对两终端添加霍尔片偏置条件,另外两相对终端添加“悬浮电位”边界条件,以表示高掺杂接触极与金属边界;
步骤8:在COMSOL Multiphysics中加入“参数化扫描”研究。对霍尔片进行叉指长度从 2μm至38μm长度变化的不同结构进行仿真以及对性能差异进行计算,在某一特定叉指长度下 所得仿真结果如附图2所示;
步骤9:在COMSOL Multiphysics中通过“探针”得到霍尔电压值,并在结果中添加“全 局评估”,通过借助表达式 计算霍尔传感器灵敏度,其中VHall即为仿真测量所得霍 尔电压,Vbias代表霍尔传感器偏置接触极所施加的偏置电压,Bz代表霍尔传感器所受到的磁感 应强度。
步骤10:添加“一维绘图组”并绘制附图3、附图4所示对比图。通过该三维仿真方法可 设计出在该尺寸下十字型水平霍尔传感器最佳灵敏度结构宽长比,即传感器叉指长度为18μm, 宽长比为0.55时,有着最高电压相关灵敏度0.0652V/(VT)。
在该实施例中仿真结果中可得出结论,在5V偏置电压和1T垂直外界磁场条件下,采用 2.6E+16cm
如表1所示,本发明对比在0μm至38μm不同叉指长度下相应的霍尔器件模型的霍尔电 压以及电压相关灵敏度,提出在霍尔器件尺寸为80μm时,18μm叉指长度能得到最佳的0.0652V/(VT)电压相关灵敏度。
该霍尔传感器测量系统可搭配如附图5所示信号处理电路模块,包括:霍尔器件、电流旋 转电路、斩波电路、差分放大电路、滤波电路;其中,电流旋转电路用于消除霍尔器件由于工 艺限制产生的失调误差,差分放大电路用于对霍尔信号进行放大处理,斩波电路用于消除差分 放大电路中存在的噪声和失调,低通滤波器用于滤除被调制到高频的噪声和失调误差信号。
表1统计了在不同叉指长度下相应的霍尔器件模型电压相关灵敏度。叉指长度变化范围为 0μm至38μm,其中叉指长度为0μm时霍尔器件可视为长方体结构模型。表1数据表明,在叉 指长度为18μm时,得到了0.3261V的霍尔电压,对应电压相关灵敏度为0.0652V/(VT)的 最佳结果,即对应的该水平霍尔传感器宽长比为0.55。
表2总结了传统的长方体结构水平霍尔片2维模型与本发明提出的宽长比为0.55的十字型 结构水平霍尔片3维模型的性能对比。表2表明,相较于传统的长方体结构水平霍尔片模型2 维模型,本发明所设计霍尔片结构将电压相关灵敏度提高了12%。
以上所述发明实施步骤仅为本发明的一项较佳实施例,因此依照于本发明所申请专利范 围而实施的等效演变模拟方法,仍应当属于本发明的有效涵盖范围。
表1:不同叉指长度所对应的霍尔器件电压相关灵敏度
表2:传统霍尔片模型与本发明实施例提出的90°旋转对称十字型霍尔片模型性能对比
一种基于COMSOLMultiphysics的3维十字型霍尔器灵敏度计算方法专利购买费用说明
Q:办理专利转让的流程及所需资料
A:专利权人变更需要办理著录项目变更手续,有代理机构的,变更手续应当由代理机构办理。
1:专利变更应当使用专利局统一制作的“著录项目变更申报书”提出。
2:按规定缴纳著录项目变更手续费。
3:同时提交相关证明文件原件。
4:专利权转移的,变更后的专利权人委托新专利代理机构的,应当提交变更后的全体专利申请人签字或者盖章的委托书。
Q:专利著录项目变更费用如何缴交
A:(1)直接到国家知识产权局受理大厅收费窗口缴纳,(2)通过代办处缴纳,(3)通过邮局或者银行汇款,更多缴纳方式
Q:专利转让变更,多久能出结果
A:著录项目变更请求书递交后,一般1-2个月左右就会收到通知,国家知识产权局会下达《转让手续合格通知书》。
动态评分
0.0