专利摘要
本发明提供了基于实测源成分谱和源解析技术的受体Si和Al重构方法。包括:利用在线观测仪器观测颗粒物的化学组分,构建多组分在线数据,输入到正定因子矩阵分解模型(PMF);设置模型参数;进行模型计算,提取因子,计算因子贡献;依据各源类标识组分特征不同,将因子识别为具体的源类;结合实测源成分谱、因子成分谱和因子贡献,反算受体Si和Al,获得Si和Al的重构受体数据。本发明提供的基于实测源成分谱和源解析技术的受体Si和Al重构方法能优化解析结果,提高模型计算的准确性。
权利要求
1.一种基于实测源成分谱和源解析技术的受体Si和Al重构方法,其特征在于所述方法包括:
第1步、利用在线观测仪器观测颗粒物的化学组分,构建多组分在线数据,输入到因子分析模型;
第2步、设置模型参数;
第3步、进行模型计算,提取因子,计算因子贡献;
第4步、依据各源类标识组分特征不同,将因子识别为具体的源类;
第5步、结合实测源成分谱、因子成分谱和因子贡献,反算受体Si和Al,获得Si和Al的重构受体数据。
2.如权利要求1所述的基于实测源成分谱和源解析技术的受体Si和Al重构方法,其特征在于所述的构建多组分在线数据,是指需要构建因子分析模型的输入数据;所述的输入数据包括水溶性离子,碳组分和元素;
水溶性离子由在线离子色谱分析仪测量,包括NH
3.如权利要求1中所述的基于实测源成分谱和源解析技术的受体Si和Al重构方法,其特征在于所述的因子分析模型是正定矩阵因子分解模型,需要设定的参数包括组分的不确定性和因子个数,组分的不确定性设置方法如公式(1)或(2)所示;
若组分浓度≤最低检测限MDL,不确定性计算如下:
Unc=5/6*MDL(1)
若组分浓度>最低检测限MDL,不确定性计算如下:
式中,Unc表示组分的不确定性;ErrorFraction是误差分数,根据具体的采样和分析情况来设定;concentration为组分浓度;
因子个数表示的是污染源的个数,根据需要观测点位的实际情况设定,且因子设定的个数小于输入数据中化学组分的数量。
4.如权利要求1所述的基于实测源成分谱和源解析技术的受体Si和Al重构方法,其特征在于根据不同污染源标识组分不同、或标识组分含量不同,结合模型输出的因子成分谱,将第3步提取的因子识别为具体的源类。
5.如权利要求1所述的基于实测源成分谱和源解析技术的受体Si和Al重构方法,其特征在于反算受体Si和Al,获得含有Si和Al的重构受体数据,工作原理如公式(3)所示:
F*G=X(3)
式中,F是因子谱和实测源成分谱的结合,因子谱是第3步获得的,不含有Si和Al;G是第3步获得的因子贡献,X是重构的受体数据,其中包含了Si和Al受体数据。
说明书
技术领域
本发明涉及大气颗粒物源解析领域,具体涉及一种基于实测源成分谱和源解析技术的受体Si和Al重构方法。
背景技术
细颗粒物污染加重对环境空气质量、大气能见度和居民人体健康产生不利影响,管控政策的制订应该基于科学分析和污染源解析,找准大气污染形成的根源和关键环节。这就需要我们对大气污染成因进行精确解析和对颗粒物来源进行准确溯源,为污染天气的政策制定提供科学依据,从而有效控制城市颗粒物污染尤其是重污染过程中的颗粒物。
目前,与离线监测技术相比,在线监测技术监测的颗粒物中化学组分种类较少,例如缺失Si、Al等重要标识组分。这类标识组分的缺失可能会导致土壤、燃煤、机动车等源类的共线性增加,从而会增加这几类源的因子成分谱和源贡献的不确定性。
发明内容
本发明的目的是解决现有在线监测技术监测的颗粒物中化学组分缺失重要的地壳标识组分Si、Al,导致土壤、燃煤、机动车等源类的共线性增加的问题,基于较高时间分辨率的测量仪器来测量受体源解析模型中需要的各种数据,结合因子分析模型和实际当地的源成分谱,提供了一种反算Si和Al获得含Si和Al重构受体数据的方法。本发明提供的方法能够优化源解析结果,提高模型计算的准确性。
本发明提供的基于实测源成分谱和源解析技术的受体Si和Al重构方法,具体步骤如下:
第1步、利用在线观测仪器观测颗粒物的化学组分,构建多组分在线数据,输入到因子分析模型;输入的在线数据包括水溶性离子,碳组分和元素。
水溶性离子由在线离子色谱分析仪测量,包括NH4+、Na+、K+、Ca2+、Mg+、SO42-、NO3-和Cl-;碳组分由半连续OC/EC仪器测量,包括OC和EC;元素由重金属在线分析仪监测,包括K、Ca、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、As、Se、Ag、Cd、Sn、Sb、Ba、Au、Hg、Tl、Pb和Bi组分,没有地壳标识组分Al Si。
第2步、设置模型参数;
所述的因子分析模型是正定因子矩阵分解模型(PMF),需要设定的参数包括组分的不确定性和因子个数;组分的不确定性设置方法如公式(1)或(2)所示:
若组分浓度≤MDL(最低检测限),不确定性计算如下:
Unc=5/6*MDL (1)
若组分浓度>MDL(最低检测限),不确定性计算如下:
式中,Unc表示组分的不确定性;ErrorFraction是误差分数,根据具体的采样和分析情况来设定;concentration为组分浓度;
因子个数表示的是污染源的个数,根据需要观测点位的实际情况设定,且因子设定的个数小于输入数据中化学组分的数量。
第3步、进行模型计算,提取因子,计算因子贡献;
第4步、根据不同污染源标识组分不同、或标识组分含量不同,结合模型输出的因子成分谱,将3步提取的因子识别为具体的源类。
第5步、结合实测源成分谱、因子谱和因子贡献,反算受体Si和Al,获得含有Si和Al的重构受体数据,工作原理如公式(3)所示;
F*G=X (3)
式中,F是因子谱和实测源成分谱的结合,因子谱是第3步获得的,不含有Si和Al;G是第3步获得的因子贡献,X是重构的受体数据,其中包含了Si和Al受体数据。
本发明的优点和有益效果:
本发明能通过反算方法获得含有Si和Al的重构受体数据,弥补现有在线数据缺失重要地壳标识组分Si和Al的不足。对重构受体数据进行源解析,能够优化源解析结果,提高模型计算的准确性。
附图说明
图1示出了反算SiAl获得含SiAl重构数据的流程图。
图2为技术路线图。
具体实施方式
实施例1
本实施例利用成都市源谱和源贡献,构建了含Si、Al的模拟受体数据、不含Si、Al的模拟受体数据以及反算Si、Al的模拟受体数据,利用PMF对这三套受体数据分别进行解析,与真实的源贡献和源谱进行对比分析,来评估反算Si和Al受体方法的可行性和科学性。为模拟真实环境情况,给构建的模拟受体数据加入了不同程度的噪音干扰,噪音干扰对PM2.5的贡献占比为5%、10%、15%。图2为技术路线图,具体步骤如下:
1.构建因子分析模型输入数据。所述的输入数据包括水溶性离子,碳组分,元素。表1和表2分别为成都市5类源的源成分谱和真实源贡献。
(1)模拟受体数据构建(未加扰动)
400天不加扰动的受体数据,其构建方法如公式(4)所示。
式中fkj表示第j种组分在第k类源中的比例(g/g),sik表示第k类源第i个样品对颗粒物的贡献,5是源类数目。已知源成分谱和源贡献值,利用公式4得到受体数据Cij。其数据大小为400×22(400天样品,22种组分)。
(2)模拟受体数据构建(加入扰动)
在未加扰动模拟受体数据构建的基础上,加入不同程度的噪音扰动。噪音即未知源,其贡献比例分别设为5%、10%和15%,贡献值为7.55±2.27、16.1±5.36和25.5±8.51。
其构建方法:每条成分谱中的每种组分,参考受体数据中组分的含量设定上下界,每种组分在给定的范围内产生400个均匀分布的随机值。每天的贡献值乘以每天的成分谱得到400条噪音受体数据,加到不受干扰的受体数据中,从而获得受不同干扰程度的数据。公式如下:
式中p表示噪音源。
基本原则:(1)噪音成分谱中没有标识组分;(2)不能和已知源共线。
基于上述原则和方法分别构建了5%、10%和15%扰动的含有Si和Al的受体;把Si和Al去掉,获得缺失Si和Al的受体数据。
表1成都市源成分谱
表2模拟数据的真实源贡献大小
2.对步骤1获得的含有Si和Al的受体数据、缺失Si和Al的受体数据进行模型计算,提取因子,获得因子成分谱和因子贡献时间序列。共识别了5种源类:二次硫酸盐、二次硝酸盐、机动车、土壤、燃煤源。
3.结合成都市源成分谱(表1)、因子成分谱和因子贡献,反算受体Si和Al,获得Si和Al的重构受体数据。因子成分谱和因子贡献为步骤2中对缺失Si和Al受体数据的解析结果。
4.利用PMF模型对步骤3获得的反算含Si和Al的重构受体数据进行模型计算,提取因子,获得因子贡献时间序列和因子成分谱。共识别了5种源类:二次硫酸盐、二次硝酸盐、机动车、土壤、燃煤源。
5.评估解析结果
把步骤2获得的含有Si和Al的受体数据的解析结果、缺失Si和Al的受体数据的解析结果、步骤4获得的反算含Si和Al的重构受体数据解析结果,与真实源谱(表2)和源贡献进行比较。表3-表5为不同噪音干扰的模拟受体数据的解析结果评价指标,评价指标如下:
为更好地反映模型解析得到的因子谱和真实源谱的差异,利用分歧系数(CD)指标来进行评估,CD接近0表明两类源之间相似度较大,接近1表明差异较大。CD值的计算公式如下:
其中,xkf和xkj分别是第f源和第j源中的第k类化学组分;p是化学组分数目。
为更好地反应模型结果和真实贡献的差异,利用平均绝对误差(AAE)和相关系数(r,源贡献时间序列间的相关性)指标来估算的每天的贡献值和真实贡献值的差异。AAE计算公式如下:
式中n表示样品数(本实验为400),aij表示第j个源第i天模型估算的贡献值,bij表示第j个源第i天的真实贡献值。AAE值越小,表明与真实值的差异越小,拟合效果越好。
表3 5%扰动
表4 10%扰动
表5 15%扰动
对于5%扰动受体数据,缺失Si、Al数据解析得到的因子谱和源贡献与真实的源谱和源贡献差异最大,其次是重构Si、Al的受体数据得到的解析结果较差。1)CD值结果表明,对于二次硫酸盐和二次硝酸盐而言,三种情况下CD值无明显差异;缺失Si、Al的受体数据情况下,机动车、煤烟尘、土壤尘的CD值最大,说明该情况下的解析得到的因子谱与其相应的真实源谱差异最大,重构Si、Al的受体数据得到的CD值次之,含Si、Al的受体数据得到的CD值最小。结果表明,缺失Si、Al组分会影响因子分析模型对机动车、煤烟尘、土壤尘的识别。2)对于机动车、土壤尘、煤烟尘,缺失Si、Al情况下得到的AAE值最大,r最小,说明缺失Si、Al的受体数据解析得到的机动车、煤烟尘、土壤尘的源贡献与其相应的真实源贡献差异最大,重构Si、Al的受体数据解析结果次之。结果表明,缺失Si、Al组分会影响因子分析模型对机动车、煤烟尘、土壤尘源贡献评估。
对于10%扰动受体数据,1)CD结果表明,缺失Si、Al的受体数据情况下,机动车、煤烟尘、土壤尘的CD值最大,说明该情况下的所解析的因子谱与其相应的真实源谱差异最大,含Si、Al的受体数据得到的CD值最小,这一结果与5%的扰动试验相似,表明缺失Si、Al对机动车、煤烟尘、土壤尘的识别和评估有影响。2)AAE和r结果表明,三种情况下,二次硫酸盐和二次硝酸盐的AAE比较相似,说明缺失Si、Al对二次源的贡献评估无明显影响。对于机动车、土壤尘、煤烟尘,缺失Si、Al情况下得到的AAE值最大,r最小,说明缺失Si、Al的受体数据解析得到的机动车、煤烟尘、土壤尘的谱与其相应的真实源贡献差异最大,其他两种情况的解析结果比较相似,与真实值的差异较小。
对于15%扰动受体数据,1)CD结果表明,缺失Si、Al的受体数据情况下,煤烟尘、土壤尘的CD值最大,说明该情况下的解析得到的因子谱与其相应的真实源谱差异最大。2)AAE和r结果表明,三种情况下,二次硫酸盐、二次硝酸盐、机动车的AAE比较相似,说明在15%干扰场景下,缺失Si、Al对二次源和机动车的贡献评估无明显影响。对于土壤尘、煤烟尘,缺失Si、Al情况下得到的AAE值最大,r最小,说明缺失Si、Al的受体数据解析得到的煤烟尘和土壤尘的谱与其相应的真实源贡献差异最大,其他两种情况的解析结果比较相似,与真实值的差异较小。
从以上结果评价指标来看,缺失Si、Al对解析土壤尘、机动车、煤烟尘有较大的影响,可能会增加其解析结果的不确定性。在源谱的识别上,含SiAl的结果最好,反算SiAl受体相比缺失SiAl对源谱有优化作用;在源贡献上,反算SiAl的方法对结果有优化作用,尤其是对燃煤源和土壤源。
实施例2
本实例利用南开大学超级站的在线监测数据、因子分析模型和天津市源成分谱进行反算获得重构数据,具体步骤如下:
1.构建因子分析模型输入数据。所述的输入数据包括水溶性离子,碳组分,元素。
利用半连续OC/EC仪器测量碳组分,包括OC和EC的浓度。
利用在线离子色谱分析仪测量水溶性离子,包括NH4+、Na+、Mg2+、S042-、NO3-、Cl-的浓度。
利用重金属在线分析仪监测元素,包括K、Ca、Cr、Mn、Fe、Ni、Cu、Zn、As、Se、Ag、Cd、Ba、Hg、Pb的浓度,缺失SiAl。(每次输入数据的组分类别根据实际监测数据会有一定变化)。
监测的数据时间分辨率为1小时
2、输入因子分析模型的参数。包括组分的不确定性,其依据组分浓度、最低检测限和具体的采样、分析情况来进行设定;
3、输入识别的因子数。模型提取的因子个数设置为6。
提取因子和计算因子贡献,提取的因子如表6所示,表7为对组分进行横向归一化的源成分谱。结合表6和表7,根据经验人为的判断因子代表的源类。因子1为二次源,因子2为海盐和生物质混合源,因子3为燃煤源,因子4为扬尘源,因子5为机动车源,因子6为工业源。表8为各污染源对受体颗粒物的贡献浓度的时间序列(ug/m3)。
表6源解析因子成分谱(ug/m3)
表7源解析因子成分谱(%)
表8-1源解析因子贡献浓度(μg/m3)
表8-2源解析因子贡献浓度(μg/m3)
4、结合源成分谱、因子谱和因子贡献,反算受体Si和Al,获得含有Si和Al的重构受体数据。
表9为天津市燃煤源、扬尘、机动车源成分谱;由于其它源排放的Si和Al含量较低,即源成分谱中Si和Al浓度很低,这里不予考虑。将步骤3中获得的源贡献矩阵(表8)中的燃煤源、扬尘源、机动车源贡献浓度时间序列与对应源成分谱(表9)中的Al、Si值相乘,获得重构的受体Si和Al浓度时间序列(表10);将之与原始输入数据合并,即获得含有Si和Al的重构受体数据。5、重构受体数据输入到因子分析模型,进行计算,提取因子,计算因子贡献。表11为缺失Si、Al和反算含Si、Al解析结果对比。反算含Si和Al解析结果的扬尘、机动车源贡献比缺失Si和Al解析结果源贡献高,燃煤源贡献降低,源贡献结果更加合理。分歧系数(CD)指标可用于评估因子谱间的差异,CD接近0表明两类源之间相似度较大,接近1表明差异较大。可看出燃煤因子、工业因子谱之间的差异较小,机动车、二次因子谱间的差异最大。
表9天津市燃煤源、扬尘源、机动车源源成分谱(g/g)
表10-1重构的受体SiAl浓度
表10-2重构的受体SiAl浓度
表11缺失SiAl和反算含SiAl解析结果对比
基于实测源成分谱和源解析技术的受体Si和Al重构方法专利购买费用说明
Q:办理专利转让的流程及所需资料
A:专利权人变更需要办理著录项目变更手续,有代理机构的,变更手续应当由代理机构办理。
1:专利变更应当使用专利局统一制作的“著录项目变更申报书”提出。
2:按规定缴纳著录项目变更手续费。
3:同时提交相关证明文件原件。
4:专利权转移的,变更后的专利权人委托新专利代理机构的,应当提交变更后的全体专利申请人签字或者盖章的委托书。
Q:专利著录项目变更费用如何缴交
A:(1)直接到国家知识产权局受理大厅收费窗口缴纳,(2)通过代办处缴纳,(3)通过邮局或者银行汇款,更多缴纳方式
Q:专利转让变更,多久能出结果
A:著录项目变更请求书递交后,一般1-2个月左右就会收到通知,国家知识产权局会下达《转让手续合格通知书》。
动态评分
0.0