IPC分类号 : C04B35/565,C04B35/622,C04B41/85,B24B33/08,B24D7/00,B24D18/00,B24D3/14,B24D3/34,B24D3/00
专利摘要
本发明公开一种废FCC催化剂在陶瓷基碳化硅油石的制备中的应用,同时公开以废FCC催化剂为原料的陶瓷基碳化硅油石的制备方法,所述以废FCC催化剂为原料的陶瓷基碳化硅油石由8~14wt%的废FCC催化剂,7~13wt%的硼玻璃,3~7wt%的长石粉,2~6wt%的粘土,60~80wt%的碳化硅微粉混合制成。且制备得到的以废FCC催化剂为原料的陶瓷基碳化硅油石的耐磨性能优异,所制油石产品使用寿命长。本发明以废FCC催化剂为原料,应用于陶瓷基碳化硅油石制备,可以扩大废FCC催化剂的应用范围,减少环境污染、降低企业成本,达到资源循环利用的目的。
权利要求
1.一种以废FCC催化剂为原料制备陶瓷基碳化硅油石的方法,其特征在于,所述以废FCC催化剂为原料的陶瓷基碳化硅油石由8~14wt%的废FCC催化剂,7~13wt%的硼玻璃,3~7wt%的长石粉,2~6wt%的粘土,60~80wt%的碳化硅微粉混合制成;所述废FCC催化剂由40~50wt%的Al
2.根据权利要求1所述以废FCC催化剂为原料制备陶瓷基碳化硅油石的方法,其特征在于,所述陶瓷基碳化硅油石由10wt%的废FCC催化剂,8wt%的硼玻璃,4wt%的长石粉,3wt%的粘土,75wt%的碳化硅微粉混合制成。
3.根据权利要求1所述以废FCC催化剂为原料制备陶瓷基碳化硅油石的方法,其特征在于,所述长石粉为钾长石类,所述长石粉包括9~18.5wt%的K
4.根据权利要求1所述以废FCC催化剂为原料制备陶瓷基碳化硅油石的方法,其特征在于,所述硼玻璃由20~35wt%的B
5.根据权利要求1所述以废FCC催化剂为原料制备陶瓷基碳化硅油石的方法,其特征在于,所述粘土为高岭土,所述粘土的粒径为75~100μm。
6.根据权利要求1所述以废FCC催化剂为原料制备陶瓷基碳化硅油石的方法,其特征在于,所述碳化硅微粉为磨料级碳化硅,所述碳化硅微粉的粒径为7~20μm。
7.根据权利要求1~6任意一项所述以废FCC催化剂为原料制备陶瓷基碳化硅油石的方法,其特征在于,所述方法包括以下步骤:
S1.将上述各组分重量比例和粒径大小的所述FCC催化剂、长石粉、硼玻璃和粘土置于球磨罐中,进行球磨,待球磨混合60~120min后,再加入碳化硅微粉,继续球磨混合120~180min,过100目筛网,筛取得到混合物料;
S2.将步骤S1所制混合物料装入模具进行压制,压制方法为定模成型,成型密度2.0~2.5g/cm
S3.对所述步骤S2的压制成型料进行烧结,烧结工艺为:以2~5℃/min的速率进行阶段式升温;第一次升温至200~300℃,保温20~30min;进行第二次升温至500~600℃,保温30~40min后;进行第三次升温至700~800℃,保温40~50min;进行第四次升温至1150~1250℃,保温90~120min后,停止加热,随炉冷却,制得以废FCC催化剂为原料的陶瓷基碳化硅油石的烧结坯料;
S4.对所述步骤S3所制的烧结坯料于110~115℃进行硫磺渗硫工艺,渗流时间为60~120min;
S5.对所述步骤S4所制以废FCC催化剂为原料的陶瓷基碳化硅油石进行切割、清洗和抛光。
8.一种权利要求1~6任意一项所述制备方法得到的陶瓷基碳化硅油石应用于钢基、镍基、铜基金属圆形内孔精密磨削加工。
说明书
技术领域
本发明涉及工业废弃催化剂回收利用,更具体地,涉及废FCC催化剂的应用和以废FCC催化剂为原料的陶瓷基碳化硅油石的制备方法及其应用。
背景技术
FCC(Fluid Catalytic Cracking,流化催化裂化)催化剂是原油生产中的重要物质,由于在原油生产过程中,伴随着重金属污染失活、积碳失活以及水热失活,FCC催化剂在使用一段时间后反应活性不可避免的降低,无法满足原油生产要求,需定期清除装置中废FCC催化剂。随着我国原油加工量逐年上升,国内废FCC催化剂处理量急剧增加,保守估计目前我国原油生产行业每年产生的废FCC催化剂可达20万吨以上。目前针对废FCC催化剂主要处理方式为炼油企业定点填埋,并且由于在废FCC催化剂中含有极微量的镍、钒等重金属或氧化物,如处理不当还会对环境造成污染,这都为企业增加额外的处理费用;也有小部分废FCC催化剂经回收再生反应重复利用;也有将其应用于水泥、建筑用砖、道路沥青等细集料或填料应用。因此如何有效地扩大废FCC催化剂应用的范围,变废为宝,为炼油企业降低处理费用,创造更大的经济利益,是当前行业关注的重要问题。
FCC催化剂原料主要为粘土、分子筛,铝溶胶和硅溶胶等物质,其主要成分为SiO2、Al2O3和少量碱金属元素,物质结构具有典型的硅铝酸盐结构,一般经喷雾干燥成圆球状,具有较大的比表面积和孔体积,其组成结构与粘土、陶瓷等物质类似,因此也有将其应用于生产陶瓷的报道。
陶瓷基碳化硅油石由于其优良的耐磨性、耐腐蚀性、良好的自锐性以及简单的成型工艺,广泛用于轴承内圆磨、沟道超精珩磨、油嘴油泵内圆磨、中孔磨以及各种合金钢的磨削和非金属材料的磨削。常见的陶瓷基碳化硅油石,选用粘土、长石粉、硼玻璃等物质,加入磨料碳化硅后混合均匀,成型,在1100~1250℃条件下加热。但暂未发现将FCC催化剂用于陶瓷基碳化硅油石的生产制备中。
发明内容
本发明针对废FCC催化剂循环再利用,提供一种废FCC催化剂的新用途,并同时公开了以废FCC催化剂为原料的陶瓷基碳化硅油石的制备方法,将以废FCC催化剂为原料,应用于陶瓷基碳化硅油石制备,该方法可以扩大废FCC催化剂的应用范围,减少环境污染、降低企业成本,达到资源循环利用的目的。且制备得到的以废FCC催化剂为原料的陶瓷基碳化硅油石的耐磨性能优异,所制油石产品使用寿命长,性能良好。
本发明的另一目的在于公开一种以废FCC催化剂为原料的陶瓷基碳化硅油石的应用。
本发明通过以下技术方案予以实现:
一种废FCC催化剂的应用,所述废FCC催化剂作为原料应用于陶瓷基碳化硅油石的制备。
一种以废FCC催化剂为原料的陶瓷基碳化硅油石,所述以废FCC催化剂为原料的陶瓷基碳化硅油石由8~14wt%的废FCC催化剂,7~13wt%的硼玻璃,3~7wt%的长石粉,2~6wt%的粘土,60~80wt%的碳化硅微粉混合制成。
进一步优选地,所述陶瓷基碳化硅油石由10wt%的废FCC催化剂,8wt%的硼玻璃,4wt%的长石粉,3wt%的粘土,75wt%的碳化硅微粉混合制成。
进一步地,所述废FCC催化剂由40~50wt%的Al2O3,35~45wt%的SiO2,5~10wt%的Na、Ca、Fe、Ti、Ni和V微量金属元素和1~5wt%的残余碳物质组成;所述废FCC催化剂的粒径为40~100μm。其中,使用废FCC催化剂时,先经600℃预处理,除掉其残余碳物质。
进一步地,所述长石粉为钾长石类,所述长石粉包括9~18.5wt%的K2O,所述长石粉的粒径为75~100μm。
进一步地,所述硼玻璃由20~35wt%的B2O3,45~55wt%的SiO2,10~25wt%的Na2O经1350℃高温熔炼制得;所述硼玻璃的粒径为75~100μm。
进一步地,所述粘土为高岭土,所述粘土的粒径为75~100μm。
进一步地,所述碳化硅微粉为磨料级碳化硅,所述碳化硅微粉的粒径为7~20μm。
本发明公开了一种以废FCC催化剂为原料的陶瓷基碳化硅油石的制备方法,所述方法包括以下步骤:
S1.将上述各组分重量比例和粒径大小的所述FCC催化剂、长石粉、硼玻璃和粘土置于球磨罐中,进行球磨,待球磨混合60~120min后,再加入碳化硅微粉,继续球磨混合120~180min,过100目筛网,筛取得到混合物料;
S2.将所述步骤S1所制混合物料装入模具进行压制,压制方法为定模成型,成型密度2.0~2.5g/cm
S3.对所述步骤S2的压制成型料进行烧结,烧结工艺为:以2~5℃/min的速率进行阶段式升温;第一次升温至200~300℃,保温20~30min;进行第二次升温至500~600℃,保温30~40min后;进行第三次升温至700~800℃,保温40~50min;进行第四次升温至1150~1250℃,保温90~120min后,停止加热,随炉冷却,制得以废FCC催化剂为原料的陶瓷基碳化硅油石的烧结坯料;
S4.对所述步骤S3所制的烧结坯料于110~115℃进行硫磺渗硫工艺,渗流时间为60~120min;
S5.对所述步骤S4所制以废FCC催化剂为原料的陶瓷基碳化硅油石进行切割、清洗和抛光。
发明的另一目的在于公开一种废FCC催化剂为原料的陶瓷基碳化硅油石的应用范围,废FCC催化剂为原料的陶瓷基碳化硅油石于钢基、镍基、铜基金属圆柱体内孔精密磨削加工。
本发明创造性地将废FCC催化剂引入到陶瓷基碳化硅油石的制备原料中,因FCC催化剂原料的物质组成与粘土、长石粉相似,来取代大部分粘土、长石粉等矿物物质,该制备方法既可有效扩大废FCC催化应用范围,又可降低炼油企业废FCC催化剂处理以及陶瓷基碳化硅油石企业生产成本,起到资源循环利用的效果。同时,废FCC催化剂中含有极微量的镍、钒等重金属或氧化物,在陶瓷基碳化硅油石高温烧结过程中,可形成Ni-O-Si、V-O-Si等陶瓷结构,既可降低陶瓷烧结温度又可对镍、钒等重金属或氧化物起到固结和改性作用,避免了镍、钒等重金属或氧化物游离到环境,造成污染。
与现有技术相比,本发明具有如下有益效果:
本发明提供一种废FCC催化剂的新用途,创造性地将废FCC催化剂引入到陶瓷基碳化硅油石的制备原料中,该制备方法既可有效扩大废FCC催化应用范围,又可降低炼油企业废FCC催化剂处理以及陶瓷基碳化硅油石企业生产成本,具有较好的经济效益。且制备得到的以废FCC催化剂为原料的陶瓷基碳化硅油石耐磨性能优异,生产的产品使用寿命长。
本发明中,废FCC催化剂含有极微量的镍、钒等重金属或氧化物,在陶瓷基碳化硅油石高温烧结过程中可参与到陶瓷结构组织内,避免了镍、钒等重金属或氧化物游离到环境,造成污染。
附图说明
图1为废FCC催化剂的扫描电镜图。
图2为采用传统工艺制备的陶瓷基碳化硅油石断面的扫描电镜图。
图3为本发明所述以废FCC催化剂为原料的陶瓷基碳化硅油石断面的扫描电镜图。
其中,1为碳化硅微粉,2为气孔,3为陶瓷基体,10为FCC催化剂球颗粒。
具体实施方式
下面结合附图和具体实施例进一步详细说明本发明。除非特别说明,本发明实施例使用的各种原料均可以通过常规市购得到,或根据本领域的常规方法制备得到,所用设备为实验常用设备。除非另有定义或说明,本文中所使用的所有专业与科学用语与本领域技术熟练人员所熟悉的意义相同。
本发明提供一种废FCC催化剂的应用,废FCC催化剂作为原料应用于陶瓷基碳化硅油石的制备。其中,废FCC催化剂由40~50wt%的Al2O3,35~45wt%的SiO2,5~10wt%的Na、Ca、Fe、Ti、Ni和V微量金属元素和1~5wt%的残余碳物质组成。废FCC催化剂在制备陶瓷基碳化硅油石时,先经600℃预处理,除掉其残余碳物质。
实施例1
一种以废FCC催化剂为原料的陶瓷基碳化硅油石,本实施例按表1中重量百分比称取原料,其制备方法如下:
S1.将粒径大小为40~100μm的废FCC催化剂、粒径大小均为75~100μm的长石粉、硼玻璃和粘土置于球磨罐中按表1的各组分重量比例进行球磨,待球磨混合60min后,再加入粒径大小为7~20μm的碳化硅微粉,继续球磨混合120min,过100目(150μm)筛网,筛取得到混合物料;
本实施例中,长石粉选用钾长石类,长石粉包括9~18.5wt%的K2O。硼玻璃经1350℃高温熔炼制得,由20~35wt%的B2O3,45~55wt%的SiO2,10~25wt%的Na2O组成。粘土为高岭土;碳化硅微粉为磨料级碳化硅;
S2.将步骤S1所制混合物料装入钢基模具进行压制,压制方法为定模成型,成型密度2.0g/cm
S3.对步骤S2的压制成型料进行烧结,烧结工艺为:以5℃/min的速率进行阶段式升温;第一次升温至300℃,保温20min;进行第二次升温至500℃,保温40min后;进行第三次升温至700℃,保温50min;进行第四次升温至1250℃,保温90min后,停止加热,随炉冷却,制得以废FCC催化剂为原料的陶瓷基碳化硅油石的烧结坯料;
S4.对步骤S3所制的烧结坯料于115℃进行硫磺渗硫工艺,渗流时间为60min,制得以废FCC催化剂为原料的陶瓷基碳化硅油石;
S5.对步骤S4所制以废FCC催化剂为原料的陶瓷基碳化硅油石进行切割、清洗和抛光。
实施例2
一种以废FCC催化剂为原料的陶瓷基碳化硅油石,本实施例按表1中重量百分比称取原料,其制备方法如下:
S1.将粒径大小为40~100μm的废FCC催化剂、粒径大小均为75~100μm的长石粉、硼玻璃和粘土置于球磨罐中按表1的各组分重量比例进行球磨,待球磨混合120min后,再加入粒径大小为7~20μm的碳化硅微粉,继续球磨混合180min,过100目(150μm)筛网,筛取得到混合物料;
本实施例中,长石粉选用钾长石类,长石粉包括9~18.5wt%的K2O。硼玻璃经1350℃高温熔炼制得,由20~35wt%的B2O3,45~55wt%的SiO2,10~25wt%的Na2O组成。粘土为高岭土;碳化硅微粉为磨料级碳化硅;
S2.将步骤S1所制混合物料装入模具进行压制,压制方法为定模成型,成型密度2.1g/cm
S3.对步骤S2的压制成型料进行烧结,烧结工艺为:以2℃/min的速率进行阶段式升温;第一次升温至200℃,保温30min;进行第二次升温至600℃,保温30min后;进行第三次升温至800℃,保温40min;进行第四次升温至1150℃,保温120min后,停止加热,随炉冷却,制得以废FCC催化剂为原料的陶瓷基碳化硅油石的烧结坯料;
S4.对步骤S3所制的烧结坯料于110℃进行硫磺渗硫工艺,渗流时间为120min;
S5.对步骤S4所制以废FCC催化剂为原料的陶瓷基碳化硅油石进行切割、清洗和抛光。
实施例3
一种以废FCC催化剂为原料的陶瓷基碳化硅油石,本实施例按表1中重量百分比称取原料,其制备方法如下:
S1.将粒径大小为40~100μm的废FCC催化剂、粒径大小均为75~100μm的长石粉、硼玻璃和粘土置于球磨罐中按表1的各组分重量比例进行球磨,待球磨混合60min后,再加入粒径大小为7~20μm的碳化硅微粉,继续球磨混合120min,过100目(150μm)筛网,筛取得到混合物料;
本实施例中,长石粉选用钾长石类,长石粉包括9~18.5wt%的K2O。硼玻璃经1350℃高温熔炼制得,由20~35wt%的B2O3,45~55wt%的SiO2,10~25wt%的Na2O组成。粘土高岭土;碳化硅微粉为磨料级碳化硅;
S2.将步骤S1所制混合物料装入模具进行压制,压制方法为定模成型,成型密度2.2g/cm
S3.对步骤S2的压制成型料进行烧结,烧结工艺为:以5℃/min的速率进行阶段式升温;第一次升温至300℃,保温20min;进行第二次升温至600℃,保温30min后;进行第三次升温至800℃,保温40min;进行第四次升温至1150℃,保温100min后,停止加热,随炉冷却,制得陶瓷基碳化硅油石的烧结坯料;
S4.对步骤S3所制的烧结坯料于110℃进行硫磺渗硫工艺,渗流时间为60min;
S5.对步骤S4所制以废FCC催化剂为原料的陶瓷基碳化硅油石进行切割、清洗和抛光。
实施例4
一种以废FCC催化剂为原料的陶瓷基碳化硅油石,本实施例按表1中重量百分比称取原料,其制备方法如下:
S1.将粒径大小为40~100μm的废FCC催化剂、粒径大小均为75~100μm的长石粉、硼玻璃和粘土置于球磨罐中按表1的各组分重量比例进行球磨,待球磨混合120min后,再加入粒径大小为7~20μm的碳化硅微粉,继续球磨混合120min,过100目(150μm)筛网,筛取得到混合物料;
本实施例中,长石粉选用钾长石类,长石粉包括9~18.5wt%的K2O。硼玻璃经1350℃高温熔炼制得,由20~35wt%的B2O3,45~55wt%的SiO2,10~25wt%的Na2O组成。粘土为高岭土;碳化硅微粉为磨料级碳化硅;
S2.将步骤S1所制混合物料装入模具进行压制,压制方法为定模成型,成型密度2.4g/cm
S3.对步骤S2的压制成型料进行烧结,烧结工艺为:以4℃/min的速率进行阶段式升温;第一次升温至250℃,保温25min;进行第二次升温至550℃,保温35min后;进行第三次升温至750℃,保温40min;进行第四次升温至1200℃,保温100min后,停止加热,随炉冷却,制得陶瓷基碳化硅油石的烧结坯料;
S4.对步骤S3所制的烧结坯料于115℃进行硫磺渗硫工艺,渗流时间为80min;
S5.对步骤S4所制以废FCC催化剂为原料的陶瓷基碳化硅油石进行切割、清洗和抛光。
实施例5
一种以废FCC催化剂为原料的陶瓷基碳化硅油石,本实施例按表1中重量百分比称取原料,其制备方法如下:
S1.将粒径大小为40~100μm的废FCC催化剂、粒径大小均为75~100μm的长石粉、硼玻璃和粘土置于球磨罐中按表1的各组分重量比例进行球磨,待球磨混合120min后,再加入粒径大小为7~20μm的碳化硅微粉,继续球磨混合120min,过100目(150μm)筛网,筛取得到混合物料;
本实施例中,长石粉选用钾长石类,长石粉包括9~18.5wt%的K2O。硼玻璃经1350℃高温熔炼制得,由20~35wt%的B2O3,45~55wt%的SiO2,10~25wt%的Na2O组成。粘土为高岭土;碳化硅微粉为磨料级碳化硅;
S2.将步骤S1所制混合物料装入模具进行压制,压制方法为定模成型,成型密度2.5g/cm
S3.对所述步骤S2的压制成型料进行烧结,烧结工艺为:以5℃/min的速率进行阶段式升温;第一次升温至200℃,保温30min;进行第二次升温至600℃,保温40min后;进行第三次升温至700℃,保温50min;进行第四次升温至1250℃,保温120min后,停止加热,随炉冷却,制得陶瓷基碳化硅油石的烧结坯料;
S4.对所述步骤S3所制的烧结坯料于115℃进行硫磺渗硫工艺,渗流时间为90min;
S5.对所述步骤S4所制以废FCC催化剂为原料的陶瓷基碳化硅油石进行切割、清洗和抛光。
对比例1
用传统工艺制备的陶瓷基碳化硅油石,由12wt%的长石粉,6wt%的硼玻璃,4wt%的粘土,3wt%的黄糊精,75wt%的碳化硅微粉的混合制成,其制备方法包括以下步骤:
Y1.将上述各组分重量比例和粒径大小的长石粉、硼玻璃、黄糊精和粘土置于球磨罐中,进行球磨,待球磨混合60~120min后,再加入碳化硅微粉,继续球磨混合120~180min,过100目筛网,筛取得到混合物料;
Y2.将步骤Y1所制混合物料装入模具进行压制,压制方法为定模成型,成型密度2.0~2.5g/cm
Y3.对步骤Y2压制成型料进行烧结,烧结工艺为:以2~5℃/min的速率进行阶段式升温;第一次升温至200~300℃,保温20~30min;进行第二次升温至500~600℃,保温30~40min后;进行第三次升温至700~800℃,保温40~50min;进行第四次升温至1150~1250℃,保温90~120min后,停止加热,随炉冷却,制得陶瓷基碳化硅油石的烧结坯料;
Y4.对步骤Y3所制的烧结坯料于110~115℃进行硫磺渗硫工艺,渗流时间为60~120min;
Y5.对步骤Y4所制的陶瓷基碳化硅油石进行切割、清洗和抛光。
表1
为了更好的说明本发明所制以废FCC催化剂为原料的陶瓷基碳化硅油石的性能,对实施例1~实施例5及对比例1中任意所得以废FCC催化剂为原料的陶瓷基碳化硅油石进行微观结构观察。
如图1废FCC催化剂的扫描电镜图可知,废FCC催化剂为球型材料,粒径大小约20~100μm。其粒径大小与长石粉、硼玻璃、粘土和碳化硅微粉等原料粒径大小匹配适中。
对比例1采用传统工艺制备的陶瓷基碳化硅油石的扫描电镜图,由图2可知,陶瓷基碳化硅油石断面陶瓷相较少,碳化硅微粉作为磨料裸露度较高,磨料间间隔较明显,陶瓷基碳化硅油石断面气孔率较高,陶瓷基碳化硅油石致密度较低。
实施例1~实施例5中任意所得以废FCC催化剂为原料的陶瓷基碳化硅油石进行微观结构,由图3可知,碳化硅微粉作为磨料被陶瓷相包覆完整,磨料间隔处结合紧密,陶瓷基碳化硅油石断面处气孔较小,加入废FCC催化剂后陶瓷基碳化硅油石断面致密性得到提高,没有出现大范围孔隙。相对应陶瓷基碳化硅油石硬度提高,耐磨性增强。
对实施例1~实施例5制备得到的以废FCC催化剂为原料的陶瓷基碳化硅油石及对比例1采用传统工艺制备的陶瓷基碳化硅油石进行硬度检测;并使用轴承超精机进行磨削实验,加工轴承套圈(GCr15轴承钢);测得使用寿命和磨削时间。
磨削实验的条件为:轴承超精机的主轴转速粗超16m/s,精超35m/s,振荡频率液压系统压强2Mpa;磨削工件技术指标,切削量10μm,粗糙度Ra≤0.4μm。其检测的性能数据见表2。
表2
由上述性能数据对比可知,本发明制备得到的以废FCC催化剂为原料的陶瓷基碳化硅油石与用传统工艺制备陶瓷基碳化硅油石相比耐磨性能优异,硬度较高,其油石产品使用寿命长,综合性能优异。
发明人声明,本发明通过上述实施例来说明本发明的详细工艺设备和工艺流程,但本发明并不局限于上述详细工艺设备和工艺流程,即不意味着本发明必须依赖上述详细工艺设备和工艺流程才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。
废FCC催化剂的应用和以废FCC催化剂为原料的陶瓷基碳化硅油石的制备方法及其应用专利购买费用说明
Q:办理专利转让的流程及所需资料
A:专利权人变更需要办理著录项目变更手续,有代理机构的,变更手续应当由代理机构办理。
1:专利变更应当使用专利局统一制作的“著录项目变更申报书”提出。
2:按规定缴纳著录项目变更手续费。
3:同时提交相关证明文件原件。
4:专利权转移的,变更后的专利权人委托新专利代理机构的,应当提交变更后的全体专利申请人签字或者盖章的委托书。
Q:专利著录项目变更费用如何缴交
A:(1)直接到国家知识产权局受理大厅收费窗口缴纳,(2)通过代办处缴纳,(3)通过邮局或者银行汇款,更多缴纳方式
Q:专利转让变更,多久能出结果
A:著录项目变更请求书递交后,一般1-2个月左右就会收到通知,国家知识产权局会下达《转让手续合格通知书》。
动态评分
0.0