专利转让平台_买专利_卖专利_中国高校专利技术交易-买卖发明专利上知查网

全部分类
全部分类
一种基于亚像素边缘检测的纱线条干均匀度检测方法

一种基于亚像素边缘检测的纱线条干均匀度检测方法

IPC分类号 : G06T7/00I,G06T7/13I,D06H3/00I,D06H3/08I

申请号
CN201910641161.1
可选规格

    看了又看

  • 专利类型:
  • 法律状态: 有权
  • 公开号: CN110458809B
  • 公开日: 2019-11-15
  • 主分类号: G06T7/00I
  • 专利权人: 西安工程大学

专利摘要

专利摘要

本发明一种基于亚像素边缘检测的纱线条干均匀度检测方法,具体按照以下步骤实施:步骤1,输入纱线图像,利用亚像素边缘检测算法检测纱线边缘信息,得到纱线图像的边缘图像;步骤2,对步骤1得到的边缘图像做预处理,得到清晰的纱线条干图像;步骤3,对纱线条干图像进行分块处理,采用坐标直方图计算纱线平均直径和条干变异系数。本发明所用方法中参数较少,且所测出的纱线平均直径误差较低,纱线条干变异系数精度更高。

权利要求

1.一种基于亚像素边缘检测的纱线条干均匀度检测方法,其特征在于,具体按照以下步骤实施:

步骤1,输入纱线图像,利用亚像素边缘检测算法检测纱线边缘信息,得到纱线图像的边缘图像;所述步骤1按照以下方式实施:

步骤1.1,将待检测的纱线图像缩放至256×256像素;

步骤1.2,假设在背景区域和纱线区域交界的不确定处有一条边缘线,边缘线将图像划分为纱线部分F和背景部分E,边缘线方程为y=ax2+bx+c;

步骤1.3,将纱线的边缘线曲线及其邻域分成若干个5×3的邻域,求取每个邻域内纱线的边缘线a,b,c的值以确定该邻 域内边缘线的方程;步骤1.3中所述每个5×3的邻域中a,b,c的值计算过程如下:

步骤1.3.1,假设5×3邻域的中心像素为D(i,j),则D(i,j)的像素大小符合下式:

其中h为单位像素的长度,Pi,j为纱线部分F内的像素,其中0≤Pi,j≤h2

步骤1.3.2,设SL、SM和SR分别是5×3邻域中左、中、右列的像素和,如式(2)(3)(4)所示:

其中L、M和R代表边纱线部分每列内的像素和;L、M和R的计算公式分别如式(5)(6)(7)所示:

步骤1.3.3,根据所述公式(1)-(7)求解出系数a,b,c,即:

步骤1.4,所有5×3的邻域内边缘线即为纱线的边缘线,输出边缘图像;

步骤2,对步骤1得到的边缘图像做预处理,得到清晰的纱线条干图像;

步骤3,对纱线条干图像进行分块处理,采用坐标直方图计算纱线平均直径和条干变异系数。

2.根据权利要求1所述一种基于亚像素边缘检测的纱线条干均匀度检测方法,其特征在于,所述步骤2中的预处理具体为:对边缘图像依次做边缘点提取、二值化和形态学开运算处理。

3.根据权利要求1所述一种基于亚像素边缘检测的纱线条干均匀度检测方法,其特征在于,所述步骤3具体为:

步骤3.1,对纱线条干图像进行分块处理,统计每一块纱线条干图像的直径Xi

步骤3.2,通过坐标直方图获取纱线的平均直径

步骤3.3,经步骤3.1后,计算条干变异系数CV,计算公式是:

式(11)中,n表示在步骤3.1,对纱线条干图像进行分块处理后的块数。

4.根据权利要求3所述一种基于亚像素边缘检测的纱线条干均匀度检测方法,步骤3.1的具体步骤为:

首先通过统计纱线图像中每一个像素出现的次数,用每一个像素出现的次数除以总像素数获得每个像素出现的频率,然后将像素与该像素出现的频率用直方图表示出来,选取两个最大概率值Y1、Y2,通过以下公式计算出纱线的平均直径

其中P代表单位像素的像素值。

说明书

技术领域

本发明属于纱线质量检测技术领域,涉及一种基于亚像素边缘检测的纱线条干均匀度检测方法。

背景技术

纱线作为针织物、机织物的源料,其质量好坏直接影响其机织,针织终端产品的质量,纱线条干均匀度是评价纱线质量的重要指标,对其进行检测与评价是纺织生产过程中必不可少的一部分,具有重要意义。

目前针对纱线条干均匀度检测主要包括光电式检测、电容检测和图像分析等方法。光电法利用测得的纱线直径数据,通过数字图像处理技术将纱线轮廓描绘在计算机模拟的纱线黑板上,提供了模拟黑板功能,提高了检测效率。但该方法分辨率较低,容易造成误差。虽然电容测量法不受主观性影响,但对测试环境的要求苛刻,测试结果极易受到环境湿度的影响。现今,随着机器视觉及图像技术的成熟,基于图像分析方法广泛应用于纱线条干检测。Sengupta等开发了一套通过图像处理测量不同纱线参数的计算机系统。该系统性能不受环境温度和光照水平的影响,但得到的纱线条干变异系数值与电容性条干仪结果相差较大。Eldessouki等采用适当放大倍数的高速摄像机捕捉纱线图像,提出了一种在合理时间内对大量纱线图像进行分析的新算法,但该方法实验成本很高。潘如如等设计了一套集纱线采集、图像处理、直径测量和均匀度检测为一体的纱线测试系统。该系统能够检测纱线的条干均匀度,但提取纱线条干的算法依赖于过多的阈值。Li等设计了一种利用连续纱线图像中的纱线直径数据建立数字纱线黑板的方法,能更直观、方便的评价纱线的均匀度,但相机的分辨率太低且数字纱线黑板的稳定性不好。Gao等提出了一种通过镜片建立3D模型的方法,能捕获更多纱线细节,但在图像分割过程中依赖于过多的阈值且技术不成熟。

发明内容

本发明的目的是提供一种基于亚像素边缘检测的纱线条干均匀度检测方法,解决现有方法的阈值,精度不高的问题。

本发明所采用的技术方案是,

一种基于亚像素边缘检测的纱线条干均匀度检测方法,具体按照以下步骤实施:

一种基于亚像素边缘检测的纱线条干均匀度检测方法,具体按照以下步骤实施:

步骤1,输入纱线图像,利用亚像素边缘检测算法检测纱线边缘信息,得到纱线图像的边缘图像;

步骤2,对步骤1得到的边缘图像做预处理,得到清晰的纱线条干图像;

步骤3,对纱线条干图像进行分块处理,采用坐标直方图计算纱线平均直径和条干变异系数。

本发明的特点还在于,

步骤1按照以下方式实施:

步骤1.1,将待检测的纱线图像缩放至256×256像素;

步骤1.2,假设在背景区域和纱线区域交界的不确定处有一条边缘线,边缘线将图像划分为纱线部分F和背景部分E,边缘线方程为y=ax2+bx+c;

步骤1.3,将纱线的边缘线曲线及其邻域分成若干个5×3的邻域,求取每个邻域内纱线的边缘线a,b,c的值以确定该领域内边缘线的方程;

步骤1.4,所有5×3的邻域内边缘线即为纱线的边缘线,输出边缘图像。

步骤1.3中每个5×3的邻域中a,b,c的值计算过程如下:

步骤1.3.1,假设5×3邻域的中心像素为D(i,j),则D(i,j)的像素大小符合下式:

其中h为单位像素的长度,Pi,j为纱线部分F内的像素,其中0≤Pi,j≤h2

步骤1.3.2,设SL、SM和SR分别是5×3邻域中左、中、右列的像素和,如式(2)(3)(4)所示:

其中L、M和R代表边纱线部分每列内的像素和;L、M和R的计算公式分别如式(5)(6)(7)所示:

步骤1.3.3,根据公式(1)-(7)求解出系数a,b,c,即:

步骤2中的预处理具体为:对边缘图像依次做边缘点提取、二值化和形态学开运算处理。

步骤3具体为:

步骤3.1,对纱线条干图像进行分块处理,统计每一块纱线条干图像的直径Xi;

步骤3.2,通过坐标直方图获取纱线的平均直径

步骤3.3,经步骤3.1后,计算条干变异系数CV,计算公式是:

式(14)中,n表示在步骤3.1,对纱线条干图像进行分块处理后的块数。

步骤3.1的具体步骤为:

首先通过统计纱线图像中每一个像素出现的次数,用每一个像素出现的次数除以总像素数获得每个像素出现的频率,然后将像素与该像素出现的频率用直方图表示出来,选取两个最大概率值Y1、Y2,通过以下公式计算出纱线的平均直径

其中P代表单位像素的像素值。

本发明的有益效果是,

本发明一种基于亚像素边缘检测的纱线条干均匀度检测方法,首先利用亚像素边缘检测算法检测纱线边缘信息,之后通过边缘信息计算纱线的平均直径条干变异系数,本发明所用方法中参数较少,且所测出的纱线平均直径误差较低,纱线条干变异系数精度更高。

附图说明

图1是本发明一种基于亚像素边缘检测的纱线条干均匀度检测方法的算法框图;

图2是本发明一种基于亚像素边缘检测的纱线条干均匀度检测方法的原理图a;

图3是本发明一种基于亚像素边缘检测的纱线条干均匀度检测方法的原理图b;

图4是本发明一种基于亚像素边缘检测的纱线条干均匀度检测方法的原理图c;

图5是本发明一种基于亚像素边缘检测的纱线条干均匀度检测方法实施例1中的原始图像;

图6是本发明一种基于亚像素边缘检测的纱线条干均匀度检测方法实施例1中的边缘图像;

图7是本发明一种基于亚像素边缘检测的纱线条干均匀度检测方法实施例1中的边缘点提取后的图像;

图8是本发明一种基于亚像素边缘检测的纱线条干均匀度检测方法实施例1中的纱线条干图像;

图9是本发明一种基于亚像素边缘检测的纱线条干均匀度检测方法实施例1中的纱线条干图像进行分块处理图;

图10是本发明一种基于亚像素边缘检测的纱线条干均匀度检测方法实施例1中坐标直方图计算纱线平均直径的过程图。

具体实施方式

下面结合附图和具体实施方式对本发明进行详细说明。

本发明一种基于亚像素边缘检测的纱线条干均匀度检测方法,如图1所示,具体按照以下步骤实施:

步骤1,输入纱线图像,利用亚像素边缘检测算法检测纱线边缘信息,得到纱线图像的边缘图像,步骤1按照以下方式实施:

步骤1.1,将待检测的纱线图像缩放至256×256像素;

步骤1.2,假设二阶曲线y=ax2+bx+c为纱线的边缘线方程,如图2所示,假设在背景区域和纱线区域交界的不确定处有一条边缘线,边缘线将图像划分为纱线部分F和背景部分E,如图3所示纱线边缘在一个像素内的示意图,图中h为单位像素的长度,SE和SF分别为边缘线在一个像素内分割出的纱线部分和背景部分,因此h2=SE+SF,h=1;假设边缘线的方程为y=ax2+bx+c。

步骤1.3,将纱线的边缘线及其领域分成若干个5×3的邻域,求取每个邻域内纱线的边缘线a,b,c的值以确定该领域内边缘线的方程;其中每个5×3的邻域中a,b,c的值计算过程如下:

步骤1.3.1,假设每个5×3邻域的中心像素为D(i,j),则D(i,j)的像素大小符合下式:

其中h为单位像素的长度,Pi,j为纱线部分F内的像素,其中0≤Pi,j≤h2

步骤1.3.2,设SL、SM和SR分别是每个5×3邻域中左、中、右列的像素和,如式(2)(3)(4)所示:

其中L、M和R代表边缘线下每列内的像素和。这些区域如式(5)(6)(7)所示:

步骤1.3.3,根据所述公式(1)-(7)求解出系数a,b,c,即:

步骤1.4,所有5×3的邻域内边缘线即为纱线的边缘线,输出边缘图像。

步骤2,对步骤1得到的边缘图像做预处理,得到边缘清晰的二值化图像,即纱线条干图像;具体的是对边缘图像依次做边缘点提取、二值化和形态学开运算处理。

步骤3,对纱线条干图像进行分块处理,采用坐标直方图计算纱线平均直径和条干变异系数,具体为步骤如下:

步骤3.1,对纱线条干图像进行分块处理,统计每一块纱线条干图像的直径Xi;

步骤3.2,通过坐标直方图获取纱线的平均直径 首先通过统计纱线图像中每一个像素出现的次数,用每一个像素出现的次数除以总像素数获得每个像素出现的频率,然后将像素与该像素出现的频率用直方图表示出来,选取两个最大概率值Y1、Y2,通过以下公式计算出纱线的平均直径

其中P代表单位像素的像素值。

步骤3.3,经步骤3.1后,计算条干变异系数CV,计算公式是:

式(11)中,n表示在步骤3.1,对纱线条干图像进行分块处理后的块数。

实施例1

以一根27.8tex纱线为例,原始图像如图5所示,测量过程如下:

执行步骤1,得到边缘图像,如图6所示;

执行步骤2,步骤2中做边缘点提取后的结果如图7所示;步骤2最终得到的纱线条干图像如图8所示;

执行步骤3.1~步骤3.3具体过程如下:

执行步骤3.1,如图9对纱线条干图像进行分块处理,本步骤纱线条干的分块方法是,每隔10个坐标点进行分块,测得的Xi如表1所示;

表1Xi的测量结果

执行步骤3.2,如图10为纱线条干图像的坐标直方图,其中Y1=132,Y2=126,P=0.024,经计算

执行步骤3.3,求得该纱线的条干变异系数,即:

采用本发明方法分别测量27.8、18.2、14.6tex的纱线平均直径和条干变异系数,最终纱线平均直径得到检测结果如表2所示,由表2可知,本文提出的方法检测的直径与理论直径的误差分别为1.86%、1.12%及0.13%。可以看出本发明方法测得的纱线平均直径误差较小。

表2本发明算法所测纱线平均直径与理论平均直径的比较

采用本发明方法测得的条干变异系数与FCM算法、Otsu算法所测结果做了对比,如表3所示,由表3可知3种纱线的条干变异系数与电容式条干仪所测结果之间的偏差率最大仅为3.3%,表明本文算法与电容性条干仪的测量结果有着较好的一致性,且测量过程中避免了人为主观因素和环境温度等客观因素的影响。

表3本文算法所测条干变异系数与其他方法比较

一种基于亚像素边缘检测的纱线条干均匀度检测方法专利购买费用说明

专利买卖交易资料

Q:办理专利转让的流程及所需资料

A:专利权人变更需要办理著录项目变更手续,有代理机构的,变更手续应当由代理机构办理。

1:专利变更应当使用专利局统一制作的“著录项目变更申报书”提出。

2:按规定缴纳著录项目变更手续费。

3:同时提交相关证明文件原件。

4:专利权转移的,变更后的专利权人委托新专利代理机构的,应当提交变更后的全体专利申请人签字或者盖章的委托书。

Q:专利著录项目变更费用如何缴交

A:(1)直接到国家知识产权局受理大厅收费窗口缴纳,(2)通过代办处缴纳,(3)通过邮局或者银行汇款,更多缴纳方式

Q:专利转让变更,多久能出结果

A:著录项目变更请求书递交后,一般1-2个月左右就会收到通知,国家知识产权局会下达《转让手续合格通知书》。

动态评分

0.0

没有评分数据
没有评价数据