专利转让平台_买专利_卖专利_中国高校专利技术交易-买卖发明专利上知查网

全部分类
全部分类
一种单斜相截断八面体钒酸铋晶体的制备方法

一种单斜相截断八面体钒酸铋晶体的制备方法

IPC分类号 : C01G31/00

申请号
CN201810882979.8
可选规格
  • 专利类型: 发明专利
  • 法律状态: 有权
  • 申请日: 2018-08-06
  • 公开号: 109133168B
  • 公开日: 2019-01-04
  • 主分类号: C01G31/00
  • 专利权人: 西安电子科技大学

专利摘要

本发明涉及一种单斜相截断八面体钒酸铋晶体的制备方法,包括:通过五水硝酸铋、硝酸溶液和氟离子溶液水获取溶液A;通过偏钒酸铵和氢氧化钠溶液获取溶液B;通过所述溶液B和所述溶液A获取溶液C;将所述溶液C进行微波水热法反应,获取晶体样品;将所述晶体样品进行清洗、干燥,获取所述单斜相截断八面体钒酸铋晶体。本发明采用微波水热法反应制备钒酸铋晶体,通过控制氟离子与铋离子的摩尔比、反应温度、反应时间等参数,制备合成了单斜相截断八面体的钒酸铋晶体,制备得到的晶体具有纯度高,光催化性能好的特点。

权利要求

1.一种单斜相截断八面体钒酸铋晶体的制备方法,其特征在于,包括:

步骤1、将0.5ml~4ml的氟离子溶液加入硝酸溶液中,制备溶液D;其中,在所述氟离子溶液中,氟离子的浓度为0.5mol/L;

步骤2、将1mmol五水硝酸铋溶解于所述溶液D中,制备溶液A;

步骤3、将0.75mmol~2mmol的偏钒酸铵溶解于氢氧化钠溶液中,制备溶液B;

步骤4、将所述溶液B所述溶液A中,搅拌10min~20min,制备溶液C;

步骤5、对所述溶液C进行处理,得到所述单斜相截断八面体钒酸铋晶体。

2.根据权利要求1所述的制备方法,其特征在于,在步骤1之前,还包括:

步骤1X、将1ml~2ml浓硝酸与18ml~20ml去离子水混合,制备所述硝酸溶液。

3.根据权利要求1所述的制备方法,其特征在于,在步骤3之前,还包括:

步骤3X、将1ml~2ml的标准氢氧化钠溶液与20ml~25ml的去离子水混合,制备所述氢氧化钠溶液;其中,所述标准氢氧化钠溶液浓度为1mol/L。

4.根据权利要求1所述的制备方法,其特征在于,步骤5包括:

步骤51、将所述溶液C倒入微波消解罐中,在100℃~190℃的温度下,通过微波水热法反应30min~4h,制备样品溶液;

步骤52、过滤所述样品溶液,得到沉淀物,并将所述沉淀物用无水乙醇进行清洗,得到样品晶体;

步骤53、将所述样品晶体放入干燥箱中,在50℃~80℃的温度下,干燥10h-12h,得到所述单斜相截断八面体钒酸铋晶体。

5.根据权利要求1所述的制备方法,其特征在于,所述五水硝酸铋纯度为分析纯AR,所述偏钒酸铵纯度为分析纯AR。

6.根据权利要求1所述的制备方法,其特征在于,所述溶液A为透明溶液。

7.根据权利要求1所述的制备方法,其特征在于,所述溶液B为透明溶液。

8.根据权利要求1所述的制备方法,其特征在于,所述溶液C橙黄色溶液。

9.根据权利要求1所述的制备方法,其特征在于,清洗方式为超声清洗;其中,清洗次数为3次。

10.根据权利要求1所述的制备方法,其特征在于,所述单斜相截断八面体钒酸铋晶体为亮黄色粉末。

说明书

技术领域

本发明属于新能源材料制备技术领域,具体涉及一种单斜相截断八面体钒酸铋晶体的制备方法。

背景技术

在过去的很多年里,研究者们致力于采用贵金属沉积、离子掺杂、染料敏化、复合半导体等方法对传统光催化剂TiO2进行改性。但是同时在其反应过程中还存在光生电子和空穴的复合、光催化量子效率低等极大地限制了它的广泛应用。研究者们也开发了很多非TiO2型的催化剂,如ZnO、磷酸银、硫化物、铋系化合物等几类具有代表性的材料。

Bi系光催化材料电子结构独特,价带由Bi-6s和O-2p轨道杂化而成。这种独特的结构使其在可见光范围内有较陡峭的吸收边,阴阳离子间的反键作用更有利于空穴的形成与流动,使得光催化反应更容易进行,因此一些具有可见光催化能力的Bi系复合氧化物,如Bi2O3、BiWO4、BiVO4得到了广泛地关注。其中,BiVO4是一种无毒的亮黄色物质,最开始主要作为颜料和铁电材料。人们在寻找和设计新型半导体材料的过程中,发现BiVO4晶体结构主要有3种:四方锆石相(z-t,Eg=2.9eV)、单斜相白钨矿(s-m,Eg=2.4eV)和四方白钨矿相(s-t,Eg=2.4eV)三种不同的晶体结构,且三相在一定条件下可以相互转化,尤其是单斜相白钨矿在可见光下有较高的光催化性能。

目前,制备BiVO4的方法是在传统晶体制备方法的基础上发展而来的,如固相反应法、共沉淀法、微乳液法、溶胶-凝胶法、水热法、以及水热基础上发展来的溶剂热法以及混合溶剂热法。但是所制备的样品物理性能不佳,纯度不高。

发明内容

为了解决现有技术中存在的上述问题,本发明提供了一种单斜相截断八面体钒酸铋晶体的制备方法。本发明要解决的技术问题通过以下技术方案实现:

本发明实施例提供了一种单斜相截断八面体钒酸铋晶体的制备方法,包括:

步骤1、将0.5ml~4ml的氟离子溶液加入硝酸溶液中,制备溶液D;其中,在所述氟离子溶液中,氟离子的浓度为0.5mol/L;

步骤2、将1mmol五水硝酸铋溶解于所述溶液D中,制备溶液A;

步骤3、将0.75mmol~2mmol的偏钒酸铵溶解于氢氧化钠溶液中,制备溶液B;

步骤4、将所述溶液B所述溶液A中,搅拌10min~20min,制备溶液C;

步骤5、对所述溶液C进行处理,得到所述单斜相截断八面体钒酸铋晶体。

在本发明的一个实施例中,在步骤1之前,还可以包括:

步骤1X、将1ml~2ml浓硝酸与18ml~20ml去离子水混合,制备所述硝酸溶液。

在本发明的一个实施例中,在步骤3之前,还可以包括:

步骤3X、将1ml~2ml的标准氢氧化钠溶液与20ml~25ml的去离子水混合,制备所述氢氧化钠溶液;其中,所述标准氢氧化钠溶液浓度为1mol/L。

在本发明的一个实施例中,步骤6包括:

步骤51、将所述溶液C倒入微波消解罐中,在100℃~190℃的温度下,通过微波水热法反应30min~4h,制备样品溶液;

步骤52、过滤所述样品溶液,得到沉淀物,并将所述沉淀物用无水乙醇进行清洗,得到样品晶体;

步骤53、将所述样品晶体放入干燥箱中,在50℃~80℃的温度下,干燥10h-12h,得到所述单斜相截断八面体钒酸铋晶体。

在本发明的一个实施例中,所述五水硝酸铋纯度为分析纯AR,所述偏钒酸铵纯度为分析纯AR。

在本发明的一个实施例中,所述溶液A为透明溶液。

在本发明的一个实施例中,所述溶液B为透明溶液。

在本发明的一个实施例中,所述溶液C橙黄色溶液。

在本发明的一个实施例中,清洗方式为超声清洗;其中,清洗次数为3次。

在本发明的一个实施例中,所述单斜相截断八面体钒酸铋晶体为亮黄色粉末。

与现有技术相比,本发明的有益效果:

本发明采用微波水热法制备钒酸铋晶体,通过控制氟离子与铋离子的摩尔比、反应温度、反应时间等参数,稳定制备合成了单斜相截断八面体的钒酸铋晶体,制备得到的晶体具有纯度高,光催化性能好的特点。

附图说明

图1为氟离子与铋离子的摩尔比为1:4时制备的单斜相截断八面体钒酸铋晶体的XRD图;

图2a-2b为氟离子与铋离子的摩尔比为1:4时制备的单斜相截断八面体钒酸铋晶体的SEM图;

图3为氟离子与铋离子的摩尔比为1:4时制备的单斜相截断八面体钒酸铋晶体的光催化活性随时间的变化曲线;

图4为氟离子与铋离子的摩尔比为1:1时制备的单斜相截断八面体钒酸铋晶体的XRD图;

图5a-5b为氟离子与铋离子的摩尔比为1:1时制备的单斜相截断八面体钒酸铋晶体的SEM图;

图6为氟离子与铋离子的摩尔比为1:1时制备的单斜相截断八面体钒酸铋晶体的光催化活性随时间的变化曲线;

图7为氟离子与铋离子的摩尔比为1.5:1时制备的单斜相截断八面体钒酸铋晶体的XRD图;

图8a-8b为氟离子与铋离子的摩尔比为1.5:1时制备的单斜相截断八面体钒酸铋晶体的SEM图;

图9为氟离子与铋离子的摩尔比为1.5:1时制备的单斜相截断八面体钒酸铋晶体的光催化活性随时间的变化曲线。

具体实施方式

下面结合具体实施例对本发明做进一步详细的描述,但本发明的实施方式不限于此。

实施例一

一种单斜相截断八面体钒酸铋晶体的制备方法,步骤如下:

步骤1、将0.5ml~4ml的氟离子溶液加入硝酸溶液中,制备溶液D;其中,在所述氟离子溶液中,氟离子的浓度为0.5mol/L。

具体地,分别取1ml~2ml的浓硝酸和18ml~20ml的去离子水;

具体的,分别取将1ml~2ml的浓硝酸和18ml~20ml的去离子水。

将1ml~2ml的浓硝酸缓慢的加入18ml~20ml的去离子水中,边加入边磁力搅拌,待冷却后,得到硝酸溶液。

取0.5ml~4ml的氟离子溶液,将其加入制备好的硝酸溶液中,通过磁力搅拌,制备溶液D。

氟离子溶液可以为氟化钠溶液、氟化钾溶液、氟化铵溶液或其他氟离子溶液的其中一种,或者为其中多种溶液混合物,优选地,氟离子溶液为氟化钠溶液。

优选地,上述氟离子溶液中,氟离子的浓度为0.5mol/L(摩尔每升)。

步骤2、将1mmol(毫摩尔)五水硝酸铋溶解于步骤1制备的溶液D中,制备溶液A。

具体的,称取1mmol质量的五水硝酸铋。

将称取的1mmol质量的五水硝酸铋加入步骤1制备好的溶液D中,通过磁力搅拌,使五水硝酸铋充分溶解于溶液D中,得到溶液A。

优选地,上述的五水硝酸铋纯度为分析纯AR。

上述的溶液A为透明溶液。

优选地,溶液A中氟离子与铋离子的摩尔比为1:4~2:1。

步骤3、将0.75mmol~2mmol的偏钒酸铵溶解于氢氧化钠溶液中,制备溶液B。

具体的,分别取1ml~2ml的标准氢氧化钠溶液和20ml~25ml去离子水;优选的,上述标准氢氧化钠溶液的浓度为1mol/L。

将1ml~2ml的标准氢氧化钠溶液缓慢的加入20ml~25ml去离子水中,边加入边磁力搅拌,待冷却后,得到氢氧化钠溶液。

称取0.75mmol~2mmol质量的偏钒酸铵;

将称取的0.75mmol~2mmol质量的偏钒酸铵加入制备好的氢氧化钠溶液中,通过磁力搅拌,使偏钒酸铵充分溶解于氢氧化钠溶液中,得到溶液B。

优选地,上述的偏钒酸铵纯度为分析纯AR。

上述制备得到的溶液B为透明溶液。

步骤4、将所述溶液B所述溶液A中,搅拌10min(分钟)~20min,制备溶液C。

具体地,将步骤3制备的溶液B快速的加入到步骤2制备的溶液A中,通过磁力搅拌10min~20min,得到溶液C。

上述制备的溶液C为橙黄色液体。

步骤5、对所述溶液C进行处理,得到所述单斜相截断八面体钒酸铋晶体。

步骤51、将步骤4制备的溶液C倒入微波消解罐中,在100℃~190℃的温度下,通过微波水热法反应30min~4h(小时),制备样品溶液。

上述制备的样品溶液包括上清液和沉淀物。

步骤52、过滤所述样品溶液,得到沉淀物,并将所述沉淀物用无水乙醇进行清洗,得到样品晶体。

具体地,过滤掉样品溶液的上清液,得到样品溶液的沉淀物。

通过超声清洗机对沉淀物进行清洗。

具体的,在超声波清洗机中加入清洗剂,并将上述得到的沉淀物放入超声清洗机的清洗剂中,打开超神清洗机,对沉淀物进行清洗。优选地,清洗剂为无水乙醇。

通过离心机对清洗后的沉淀物进行甩干。

将清洗后的沉淀物放入离心机,通过离心机去除沉淀物中清洗剂。优选地,离心机的转速为6000转每分钟(r/min);

再重复上述超声清洗机清洗和离心机甩干2次,得到样品晶体。

步骤53、将得到的样品晶体放入干燥箱中,在50℃~80℃的温度下,干燥10h-12h,得到所述单斜相截断八面体钒酸铋晶体。

得到的单斜相截断八面体钒酸铋晶体为亮黄色粉末。

优选地,本实施例利用微波水热法反应制备钒酸铋晶体,在控制n(F-):n(Bi3+)摩尔比,以及控制反应温度和控制反应时间的条件下,制备了单斜相截断八面体钒酸铋晶体。其中,在微波水热法反应中,微波产生的交变电场方向,每秒变向高达数亿次。这使得极性电介质分子发生偶极转向极化,并因其转向极化速度跟不上交变电场而滞后,导致材料内部功率耗散。同时,一部分微波能转化为热能,使物质本身加热升温。

微波水热法反应是以微波作为加热方式的水热法,将微波场与传统的水热合成法结合起来,以微波场作热源进行水热合成的一种方法。在进行微波水热法反应时,电磁场中的物质因本身介质损耗而引起整体加热,从而可以实现分子水平上的搅拌,且不同深度的反应物都能受到微波的穿透,各个深度的反应物都能同时被加热,加热均匀,无需要通过温度差进行热传导,温度梯度小,而且物质升温迅速,能量利用效率很高,反应时间明显缩短。

本发明采用微波水热法反应制备钒酸铋晶体,通过控制氟离子与铋离子的摩尔比、反应温度、反应时间等参数,制备合成了单斜相截断八面体的钒酸铋晶体,制备得到的晶体具有纯度高,光催化性能好的特点。

实施例二

请参见图1、图2a-2b和图3,图1为氟离子与铋离子的摩尔比为1:4时制备的单斜相截断八面体钒酸铋晶体的XRD图;图2a-2b为氟离子与铋离子的摩尔比为1:4时制备的单斜相截断八面体钒酸铋晶体的SEM图;图3为氟离子与铋离子的摩尔比为1:4时制备的单斜相截断八面体钒酸铋晶体的光催化活性随时间的变化曲线。

一种单斜相截断八面体钒酸铋晶体的制备方法,步骤如下:

步骤一、将1ml浓硝酸与19ml去离子水混合,制备硝酸溶液。

具体地,分别取1ml的浓硝酸和19ml的去离子水;

将1ml的浓硝酸缓慢的加入19ml的去离子水中,边加入边磁力搅拌,待冷却后,得到硝酸溶液。

步骤二、将0.5ml的氟化钠溶液加入步骤一制备的所述硝酸溶液中,制备溶液D。

具体地,取0.5ml的氟化钠溶液,将其加入步骤一制备的硝酸溶液中,通过磁力搅拌,制备溶液D。

优选地,上述氟化钠溶液浓度为0.5mol/L。

步骤三、将1mmol五水硝酸铋溶解于步骤二制备的所述溶液D中,制备溶液A。

具体的,称取1mmol质量的五水硝酸铋;

将称取的1mmol质量的五水硝酸铋加入步骤二制备的溶液D中,通过磁力搅拌,使五水硝酸铋充分溶解于步骤二制备的溶液D中,得到溶液A。

上述的五水硝酸铋纯度为分析纯AR,上述得到的溶液A为透明溶液。

优选地,溶液A中氟离子与铋离子的摩尔比为1:4。

步骤四、1.5ml的标准氢氧化钠溶液与20ml的去离子水混合,制备氢氧化钠溶液。

具体的,分别取1.5ml的标准氢氧化钠溶液和20ml去离子水;

将1.5ml的标准氢氧化钠溶液缓慢的加入20ml去离子水中,边加入边磁力搅拌,待冷却后,得到氢氧化钠溶液。

上述标准氢氧化钠溶液的浓度为1mol/L。

步骤五、将1mmol的偏钒酸铵溶解于步骤四制备的所述氢氧化钠溶液中,制备溶液B。

具体地,称取1mmol质量的偏钒酸铵;

将称取的1mmol质量的偏钒酸铵加入步骤四制备的氢氧化钠溶液中,通过磁力搅拌,使偏钒酸铵充分溶解于步骤四制备的氢氧化钠溶液中,得到溶液B。

上述的偏钒酸铵纯度为分析纯AR,上述制备得到的溶液B为透明溶液。

步骤六、将步骤五制备的所述溶液B加入步骤三制备的所述溶液A中,搅拌10min~20min,制备溶液C。

具体地,将步骤五制备的溶液B快速的加入到步骤三制备的溶液A中,通过磁力搅拌10min~20min,得到溶液C。

上述制备的溶液C为橙黄色液体。

步骤七、将步骤六制备的所述溶液C倒入微波消解罐中,在100℃~190℃的温度下,通过微波水热法反应30min~4h,制备样品溶液。

上述制备的样品溶液包括上清液和沉淀物。

步骤八、过滤步骤七制备的所述样品溶液,得到沉淀物,并将所述沉淀物用无水乙醇进行清洗,得到样品晶体;

具体地,过滤掉步骤七制备的样品溶液的上清液,得到样品溶液的沉淀物;

在超声波清洗机中加入无水乙醇;

将上述得到的沉淀物放入超神清洗机的无水乙醇中,打开超神清洗机,对沉淀物进行清洗;

将清洗后的沉淀物放入离心机,通过离心机去除沉淀物中杂质,其中,离心机的转速为6000r/min;

重复上述超声清洗机清洗和离心机去杂质2次,得到样品晶体。

步骤九、将步骤八得到的所述样品晶体放入干燥箱中,在80℃的温度下,干燥10h,得到所述单斜相截断八面体钒酸铋晶体。

单斜相截断八面体钒酸铋晶体为亮黄色粉末。

优选地,如图1所示,通过氟离子与铋离子的摩尔比为1:4时制备的单斜相截断八面体钒酸铋晶体的X射线衍射(X-ray diffraction,简称:XRD)图,可以得出,该晶体的主要衍射峰分别与NO.14-0688(单斜相钒酸铋晶体标准PDF卡片编号,其中,晶胞参数 )衍射峰相对应,(040)晶面强度高于主峰(121)晶面,即确定该晶体为单斜相截断八面体钒酸铋晶体(单斜白钨矿结相构的BiVO4晶体)。

优选地,如图2a和图2b所示,SEM图为扫描电子显微镜(SEM)图。本实施例合成的单斜相截断八面体钒酸铋晶体形貌呈截断八面体状,尺寸不均,大的晶粒直径约为5μm,厚度约为2μm,较小的直径约为2.5μm,厚度为1μm。

优选地,以亚甲基蓝(MB)溶液为被降解的有机污染物,用500W的氙灯加420nm的滤光片来模拟可见光对本实施例制备的BiVO4样品进行光催化性能测试,优选地,氙灯的型号为:XQ350-500。具体的实验操作如下:

(1)配置亚甲基蓝溶液。将1mg亚甲基蓝粉末,溶于100mL的去离子水中,搅拌得到浓度为10mg/L的MB水溶液。

(2)处理样品,达到吸脱附平衡。称取5mg的BiVO4样品,将其溶解在100mL的MB水溶液中,超声震荡20min,在严格避光条件下搅拌10h,使得BiVO4粉末在溶液中达到吸附-脱附平衡。

(3)测试光催化效率。将处理好的溶液样品放在氙灯下光照降解MB溶液。光照过程中每间隔20min取一次样品,一般情况下取10次样,并进行离心取上层清液放入比色皿中,使用分光光度计检测样品吸光度,其中,分光光度计可以选取用UV-vis分光光度计。

(4)计算降解率。根据吸光度数据,计算BiVO4降解亚甲基蓝溶液的效率。

优选地,如图3所示,本实施例制备的BiVO4,其光催化降解时间在200min时,对亚甲基蓝溶液达到84%的降解率。

实施例三

请参见图4、图5a-5b和图6,图4为氟离子与铋离子的摩尔比为1:1时制备的单斜相截断八面体钒酸铋晶体的XRD图;图5a-5b为氟离子与铋离子的摩尔比为1:1时制备的单斜相截断八面体钒酸铋晶体的SEM图;图6为氟离子与铋离子的摩尔比为1:1时制备的单斜相截断八面体钒酸铋晶体的光催化活性随时间的变化曲线。

本实施例提供另一种单斜相截断八面体钒酸铋晶体的制备方法,本实施例与实施例二的区别之处在于:

本实施例将实施例二中步骤二的0.5ml氟化钠溶液替换成2ml;

相应的本实施例将实施例二中步骤三的溶液A中氟离子与铋离子的摩尔比为1:4替换为溶液A中氟离子与铋离子的摩尔比为1:1

本实施例中步骤一、步骤四至步骤九与实施二的对应步骤形同,此处不再赘述。

优选地,如图4所示,本实施例制备的单斜相截断八面体钒酸铋晶体(040)晶面强度约为主峰(121)晶面的42%。

优选地,如图5a和图5b所示,本实施例合成的单斜相截断八面体钒酸铋晶体形貌呈截断八面体状,尺寸分布较为均匀,晶粒直径约为2μm,厚度为2μm。

优选地,如图6所示,本实施制备的BiVO4,其光催化降解时间在200min时,对亚甲基蓝溶液达到降解率达78%的降解率。

实施例四

请参见图7、图8a-8b和图9,图7为氟离子与铋离子的摩尔比为1.5:1时制备的单斜相截断八面体钒酸铋晶体的XRD图;图8a-8b为氟离子与铋离子的摩尔比为1.5:1时制备的单斜相截断八面体钒酸铋晶体的SEM图;图9为氟离子与铋离子的摩尔比为1.5:1时制备的单斜相截断八面体钒酸铋晶体的光催化活性随时间的变化曲线。

本实施例提供又一种单斜相截断八面体钒酸铋晶体的制备方法,本实施例与实施例二的区别之处在于:

本实施例将实施例二中步骤二的0.5ml氟化钠溶液替换成3ml;

相应的本实施例将实施例二中步骤三的溶液A中氟离子与铋离子的摩尔比为1:4替换为溶液A中氟离子与铋离子的摩尔比为1.5:1

本实施例中步骤一、步骤四至步骤九与实施二的对应步骤形同,此处不再赘述。

优选地,如图7所示,本实施例制备的单斜相截断八面体钒酸铋晶体(040)晶面强度是主峰(121)晶面的43.9%。

优选地,如图8a和图8b所示,本实施例合成的单斜相截断八面体钒酸铋晶体形貌呈截断八面体状,尺寸分布不均,大的晶粒直径约为8μm,厚度约为5μm,较小晶粒直径约为3μm,厚度为2μm。

优选地,如图9所示,本实施例制备的BiVO4,其光催化降解时间在200min时,对亚甲基蓝溶液达到降解率达74%的降解率。

以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

一种单斜相截断八面体钒酸铋晶体的制备方法专利购买费用说明

专利买卖交易资料

Q:办理专利转让的流程及所需资料

A:专利权人变更需要办理著录项目变更手续,有代理机构的,变更手续应当由代理机构办理。

1:专利变更应当使用专利局统一制作的“著录项目变更申报书”提出。

2:按规定缴纳著录项目变更手续费。

3:同时提交相关证明文件原件。

4:专利权转移的,变更后的专利权人委托新专利代理机构的,应当提交变更后的全体专利申请人签字或者盖章的委托书。

Q:专利著录项目变更费用如何缴交

A:(1)直接到国家知识产权局受理大厅收费窗口缴纳,(2)通过代办处缴纳,(3)通过邮局或者银行汇款,更多缴纳方式

Q:专利转让变更,多久能出结果

A:著录项目变更请求书递交后,一般1-2个月左右就会收到通知,国家知识产权局会下达《转让手续合格通知书》。

动态评分

0.0

没有评分数据
没有评价数据
×

打开微信,点击底部的“发现”

使用“扫一扫”即可将网页分享至朋友圈

×
复制
用户中心
我的足迹
我的收藏

您的购物车还是空的,您可以

  • 微信公众号

    微信公众号
在线留言
返回顶部