专利转让平台_买专利_卖专利_中国高校专利技术交易-买卖发明专利上知查网

全部分类
全部分类
一种石油烃的高效催化转化方法

一种石油烃的高效催化转化方法

IPC分类号 : C10G69/00

申请号
CN201110319845.3
可选规格
  • 专利类型: 发明专利
  • 法律状态: 有权
  • 申请日: 2011-10-20
  • 公开号: 103059990A
  • 公开日: 2013-04-24
  • 主分类号: C10G69/00
  • 专利权人: 中国石油化工股份有限公司 ; 中国石油化工股份有限公司石油化工科学研究院

专利摘要

一种石油烃的高效催化转化方法,高硫蜡油与平衡活性较低且活性分布相对均匀的含沸石的热再生催化剂在催化裂化单元反应器的下部接触并发生裂化反应,生成的油气和含炭的催化剂上行在一定的反应环境下发生选择性地氢转移反应和异构化反应,分离反应油气得到包含液化气、汽油和催化蜡油的反应产物,待生催化剂经汽提、再生后循环使用,其中催化蜡油和任选的其它二次加工蜡油进入加氢裂化单元进行反应,优选加氢裂化尾油返回到催化裂化单元。该方法提高柴油产率和柴油十六烷值,提高了原料中的氢利用率,同时又提高原料中氢的利用率,从而可以节约石油资源,为炼油生产过程清洁化和炼油产品清洁化提供了一条新的途径。

权利要求

1.一种石油烃的高效催化转化方法,其特征是该方法包括以下步骤:

(1)高硫蜡油与平衡活性较低且活性分布相对均匀的含沸石的热再生催化剂在催化裂化单元反应器的下部接触并发生裂化反应,生成的油气和含炭的催化剂上行在一定的反应环境下发生选择性地氢转移反应和异构化反应,分离反应油气得到包含液化气、汽油、柴油和催化蜡油的反应产物,待生催化剂经汽提、再生后循环使用;

(2)来自步骤(1)的催化蜡油和任选的其它二次加工蜡油进入加氢裂化单元进行加氢裂化反应;

(3)加氢裂化尾油返回到催化裂化单元,作为催化裂化的原料油,或作为加氢裂化单元、蒸汽裂解制乙烯单元、其它烃类处理单元中的一种或几种单元的原料。

2.按照权利要求1的方法,其特征在于步骤(1)的汽油进入汽油脱硫装置,柴油进入柴油脱硫装置。

3.按照权利要求1的方法,其特征在于步骤(1)的再生烟气进入烟气处理装置进行处理,处理后的烟气排放。

4.按照权利要求1的方法,其特征在于所述高硫蜡油的硫含量大于0.5重%。

5.按照权利要求4的方法,其特征在于所述高硫蜡油的硫含量大于1.0重%。

6.按照权利要求1的方法,其特征在于所述高硫蜡油选自常压塔顶油、常压塔抽出的馏分油、直馏减压蜡油、浅度加氢蜡油、焦化蜡油、脱沥青油及其混合物。

7.按照权利要求1的方法,其特征在于所述其它二次加工蜡油选自焦化蜡油、脱沥青油及其混合物。

8.按照权利要求1的方法,其特征在于所述裂化反应条件如下:反应温度为430℃~620℃,反应时间为0.2秒~2.0秒,催化剂与原料油的重量比为2~15∶1。

9.按照权利要求8的方法,其特征在于所述裂化反应条件如下:反应温度为490℃~600℃,反应时间为0.3秒~1.5秒,催化剂与原料油的重量比为3~12∶1。

10.按照权利要求1的方法,其特征在于所述氢转移反应和异构化反应条件如下:反应温度为420℃~550℃,反应时间为1秒~30秒。

11.按照权利要求10的方法,其特征在于所述氢转移反应和异构化反应条件如下:反应温度为460℃~500℃,反应时间为2秒~15秒。

12.按照权利要求1的方法,其特征在于步骤(1)所用的反应器选自等直径提升管、等线速提升管、流化床或变径提升管中之一,或者是由等直径提升管和流化床构成的复合反应器。

13.按照权利要求13的方法,其特征在于变径提升管,第二反应区与第一反应区的直径之比为1.5~5.0∶1。

14.按照权利要求1的方法,其特征在于步骤(1)所用的催化剂平衡活性为35~60。

15.按照权利要求14的方法,其特征在于步骤(1)所用的催化剂平衡活性为40~55。

16.按照权利要求1的方法,其特征在于步骤(1)所用的活性分布相对均匀的催化剂是指加入到催化裂化装置内催化剂初始活性不超过80,该催化剂的自平衡时间为0.1小时~50小时。

17.按照权利要求16的方法,其特征在于步骤(1)所用的活性分布相对均匀的催化剂是指加入到催化裂化装置内催化剂初始活性不超过75,该催化剂的自平衡时间为0.1~30小时。

18.按照权利要求17的方法,其特征在于步骤(1)所用的活性分布相对均匀的催化剂是指加入到催化裂化装置内催化剂初始活性不超过70,该催化剂的自平衡时间为0.1~10小时。

19.按照权利要求1的方法,其特征在于步骤(1)所述沸石为大孔沸石,选自稀土Y、稀土氢Y、超稳Y、高硅Y中的一种或几种。

20.按照权利要求1的方法,其特征在于步骤(2)所述加氢裂化反应条件为:氢分压3.0~20.0MPa,反应温度150~450℃,体积空速0.1~20h-1,氢油比100~2000v/v。

21.按照权利要求1的方法,其特征在于步骤(2)所述加氢裂化催化剂为一种或几种负载在分子筛上的VIB族或/和VIII族非贵金属催化剂。

22.按照权利要求21的方法,其特征在于步骤(2)所述加氢裂化催化剂的组成以重量计:氧化铝载体含量为20%~70%,分子筛含量10%~65%,VIB金属氧化物含量为10%~40%,VIII族金属氧化物含量为1%~20%。

23.按照权利要求21或22的方法,其特征在于所述VIB族非贵金属为钼或/和钨,VIII族非贵金属为镍、钴、铁中的一种或多种。

24.按照权利要求21或22的方法,其特征在于所述分子筛选自Y型分子筛、β型分子筛、ZSM-5型分子筛、SAPO系列分子筛中的一种或多种。

说明书

技术领域

本发明属于石油烃的催化转化方法,更具体地说,是涉及到一种劣质蜡油催化裂化与加氢裂化的集成工艺的催化转化方法。

背景技术

常规的催化裂化工艺加工高硫劣质蜡油原料不但使催化裂化再生烟气中的SOX排放不符合环保要求,而且汽油与柴油产品中的硫含量均不能符合产品规格要求。因此,通常这些高硫劣质蜡油原料先经加氢处理,除去硫、氮和金属等杂质,饱和原料中的多环芳烃,提高其催化裂化反应性能,然后再作为催化裂化的原料,生产低硫汽油和柴油。

US4780193公开了一种采用加氢精制技术提高催化裂化原料质量的方法,该加氢精制装置的反应温度低于390℃,反应压力至少在10.0MPa以上,最好在12.0MPa以上。在有利于芳烃饱和的工艺条件下,通过加氢精制提高催化裂化装置原料的裂化性能,从而提高催化裂化装置的转化率,生产出高辛烷值的汽油调和组分。CN101684417A公开了一种优化的加氢-催化裂化组合工艺方法,蜡油原料在加氢处理反应区进行反应,得到的加氢蜡油作为催化裂化原料油,不经分馏直接进入催化裂化单元,催化重循环油循环回加氢处理反应区,热高压分离器顶部气相物流和催化轻循环与任选的粗柴油进入加氢改质反应区,进行加氢改质反应,反应生成物经分馏后得到加氢石脑油和加氢柴油。加氢处理单元和加氢改质单元公用氢气系统,降低装置设备投资和操作费用。产品方案灵活,可同时生产优质低硫汽油、优质柴油以及重整原料。

通常,劣质蜡油原料经加氢处理后可以改善其催化裂化性能,但在加氢处理过程中会因为馏程变轻而产生部分柴油、石脑油和轻烃,不利于多产汽油和丙烯。此外,多产异构烷烃的催化裂化工艺(MIP)对处理优质的催化裂化原料油,尤其是加氢蜡油,造成汽油烯烃含量偏低,液化气中的异丁烯含量偏低,产物分布不够优化,石油资源未充分利用。

MIP工艺已得到广泛的应用,目前已应用到近50套催化裂化装置,取得巨大的经济效益和社会效益。关于富含异丁烷的液化气和富含异构烷烃汽油的MIP技术详细描述见ZL99105904.2、ZL99105905.0和ZL99105903.4。

随着环保法规对催化裂化生产过程以及产品质量要求日益严格,催化裂化即使处理加氢蜡油,催化裂化再生烟气中的SOX排放也难以符合环保要求,仍然需要增加再生烟气处理装置。当再生烟气处理装置处理较低含量的SOX烟气时,其处理效率将有所降低。此外,即使加氢蜡油催化裂化生产汽油硫含量较低,但仍然难以将汽油中的硫含量降低到10微克/克以下,汽油仍然需要后处理。当采用S-Zorb技术处理硫含量较低的汽油时,S-Zorb因汽油中的硫含量过低,难以维持其平衡操作,需从外界补充其他的硫化物,造成S-Zorb装置使用效益降低。

发明内容

本发明的目的是提供一种劣质蜡油催化裂化与加氢裂化的集成工艺的高效催化转化方法。本发明的第一种实施方案如下:

本发明提供的催化转化方法包括以下步骤:

(1)高硫蜡油与平衡活性较低且活性分布相对均匀的含沸石的热再生催化剂在催化裂化单元反应器的下部接触并发生裂化反应,生成的油气和含炭的催化剂上行在一定的反应环境下发生选择性地氢转移反应和异构化反应,分离反应产物,待生催化剂经汽提、再生后循环使用;

(2)来自步骤(1)的催化蜡油和任选的其它二次加工的蜡油作为加氢裂化装置的原料油,进入加氢裂化单元进行加氢裂化反应;

(3)加氢裂化尾油返回到催化裂化单元,作为催化裂化的原料油,或作为加氢裂化单元、蒸汽裂解制乙烯单元、其它烃类处理单元中的一种或几种单元的原料。

步骤(1)的汽油进入汽油脱硫装置,柴油进入柴油脱硫装置;

步骤(1)的再生烟气进入烟气处理装置,进行烟气处理,处理后的烟气排放。

本发明提供的催化转化方法是这样具体实施的:

(1)、催化裂化单元

(a)、预热的高硫劣质原料油进入反应器与平衡活性较低且活性分布相对均匀的含沸石的热再生催化剂接触并发生裂化反应,反应温度为430℃~620℃,最好为490℃~600℃,反应时间为0.2秒~2.0秒,最好为0.3秒~1.5秒,催化剂与原料油的重量比(以下简称剂油比)为2~15∶1,最好为3~12∶1;

(b)、生成的油气和用过的催化剂上行,在一定的反应环境下发生选择性地氢转移反应和异构化反应,反应温度为420℃~550℃,最好为460℃~500℃,反应时间为1秒~30秒,最好为2秒~15秒,催化剂与原料油的重量比为2~18∶1,最好为3~15∶1,裂化反应和氢转移反应的水蒸汽与原料油的重量比(以下简称水油比)为0.03~0.3∶1,最好为0.05~0.3∶1,压力为130kPa~450kPa;

(c)、分离反应产物得到富含丙烯的液化气、烯烃含量适中的汽油、柴油、催化蜡油及其它产品,待生催化剂经汽提进入再生器,经烧焦再生后循环使用。

(d)、催化蜡油经过滤装置或蒸馏装置除去少量的催化剂颗粒后进入加氢裂化装置。

该方法适用的反应器可以是选自等直径提升管、等线速提升管、流化床或变径提升管中之一,也可以是由等直径提升管和流化床构成的复合反应器。

本发明提供的方法可以在等直径提升管、等线速提升管或流化床反应器中进行,其中等直径提升管与炼厂常规的催化裂化反应器相同,等线速提升管中流体的线速基本相同。等直径提升管、等线速提升管反应器从下至上依次为预提升段、第一反应区、第二反应区,流化床反应器从下至上依次为第一反应区、第二反应区,第一反应区、第二反应区的高度之比为10~40∶90~60。当使用等直径提升管、等线速提升管或流化床反应器时,在第二反应区底部设一个或多个冷激介质入口,和/或在第二反应区内设置取热器,取热器的高度占第二反应区高度的50%~90%。分别控制每个反应区的温度和反应时间。冷激介质是选自冷激剂、冷却的再生催化剂和冷却的半再生催化剂中的一种或一种以上的任意比例的混合物。其中冷激剂是选自液化气、粗汽油、稳定汽油、柴油、重柴油或水中的一种或一种以上的任意比例的混合物;冷却的再生催化剂和冷却的半再生催化剂是待生催化剂分别经两段再生和一段再生后冷却得到的,再生催化剂碳含量为0.1重%以下,最好为0.05重%以下,半再生催化剂碳含量为0.1重%~0.9重%,最好碳含量为0.15重%~0.7重%。

本发明提供的方法也可以在由等直径提升管和流化床构成的复合反应器中进行,下部的等直径提升管为第一反应区,上部的流化床为第二反应区,分别控制每个反应区的温度和反应时间。在流化床的底部设一个或多个冷激介质入口,和/或在第二反应区内设置取热器,取热器的高度占第二反应区高度的50%~90%。分别控制每个反应区的温度和反应时间。冷激介质是选自冷激剂、冷却的再生催化剂和冷却的半再生催化剂中的一种或一种以上的任意比例的混合物。其中冷激剂是选自液化气、粗汽油、稳定汽油、柴油、重柴油或水中的一种或一种以上的任意比例的混合物;冷却的再生催化剂和冷却的半再生催化剂是待生催化剂分别经两段再生和一段再生后冷却得到的,再生催化剂碳含量为0.1重%以下,最好为0.05重%以下,半再生催化剂碳含量为0.1重%~0.9重%,最好碳含量为0.15重%~0.7重%。

本发明提供的方法还可以在一种新型变径提升管反应器中进行的,详细描述见ZL99105903.4。预提升段的直径与常规的等直径提升管反应器相同,一般为0.02米~5米,其高度占反应器总高度的5%~10%。预提升段的作用是在预提升介质的存在下使再生催化剂向上运动并加速,所用的预提升介质与常规的等直径提升管反应器所用的相同,选自水蒸汽或干气。

第一反应区的结构类似于常规的等直径提升管反应器,其直径可与预提升段相同,也可较预提升段稍大,第一反应区的直径与预提升段的直径之比为1.0~2.0∶1,其高度占反应器总高度的10%~30%。原料油和催化剂在该区混合后,在较高的反应温度和剂油比、较短的停留时间(一般为0.5秒~2.5秒)下,主要发生裂化反应。

第二反应区比第一反应区要粗,其直径与第一反应区的直径之比为1.5~5.0∶1,其高度占反应器总高度的30%~60%。其作用是降低油气和催化剂的流速和反应温度。降低该区反应温度的方法,可以从该区与第一反应区的结合部位注入冷激介质,和/或通过在该区设置取热器,取走部分热量以降低该区反应温度,从而达到抑制二次裂化反应、增加异构化反应和氢转移反应的目的。冷激介质是选自冷激剂、冷却的再生催化剂和冷却的半再生催化剂中的一种或一种以上的任意比例的混合物。其中冷激剂是选自液化气、粗汽油、稳定汽油、柴油、重柴油或水中的一种或一种以上的任意比例的混合物;冷却的再生催化剂和冷却的半再生催化剂是待生催化剂分别经两段再生和一段再生后冷却得到的,再生催化剂碳含量为0.1重%以下,最好为0.05重%以下,半再生催化剂碳含量为0.1重%~0.9重%,最好碳含量为0.15重%~0.7重%。若设置取热器,则其高度占第二反应区高度的50%~90%。物流在该反应区停留时间可以较长,为2秒~30秒。

出口区的结构类似于常规的等直径提升管反应器顶部出口部分,其直径与第一反应区的直径之比为0.8~1.5∶1,其高度占反应器总高度的0~20%。物流可在该区停留一定时间,以抑制过裂化反应和热裂化反应,提高流体流速。

该方法适用的高硫蜡油选自常压塔顶油、常压塔抽出的馏分油、直馏减压蜡油、浅度加氢蜡油、焦化蜡油(CGO)、脱沥青油(DAO)及其混合物,其特征为硫含量应大于0.5重%,最好大于1.0重%。

步骤(2)所述其它二次加工蜡油选自CGO、DAO及其混合物。

所述含沸石的催化剂包括沸石、无机氧化物、粘土。以干基计,各组分分别占催化剂总重量:沸石约5重量~约50重量%,优选约10重量~约30重量%;无机氧化物约0.5重量~约50重量%;粘土0重量~约70重量%。其中沸石作为活性活分,优选大孔沸石。所述的大孔沸石是指由稀土Y、稀土氢Y、超稳Y、高硅Y构成的这组沸石中的一种或几种。

无机氧化物作为基质,选自二氧化硅(SiO2)和/或三氧化二铝(Al2O3)。以干基计,无机氧化物中二氧化硅占约50重量~约90重量%,三氧化二铝占约10重量~约50重量%。

粘土作为粘接剂,选自高岭土、多水高岭土、蒙脱土、硅藻土、埃洛石、皂石、累托土、海泡石、凹凸棒石、水滑石、膨润土中的一种或几种。

该方法中的两个反应区也可以适用不同类型催化剂,不同类型催化剂可以是颗粒大小不同的催化剂和/或表观堆积密度不同的催化剂。颗粒大小不同的催化剂和/或表观堆积密度不同的催化剂上活性组分分别选用不同类型沸石,沸石选自Y型沸石、HY型沸石、超稳Y型、高硅Y沸石中的一种或几种,该沸石可以含稀土和/或磷,也可以不含稀土和磷。大小不同颗粒的催化剂和/或高低表观堆积密度的催化剂可以分别进入不同的反应区,例如,含有超稳Y型沸石的大颗粒的催化剂进入第一反应区,增加裂化反应,含有稀土Y型沸石的小颗粒的催化剂进入第二反应区,增加氢转移反应,颗粒大小不同的催化剂在同一汽提器汽提和同一再生器再生,然后分离出大颗粒和小颗粒催化剂,小颗粒催化剂经冷却进入第二反应区。颗粒大小不同的催化剂是以30~40微米之间分界,表观堆积密度不同的催化剂是以0.6~0.7g/cm3之间分界。

该方法适用的活性较低的催化剂是指催化剂活性在35~55,优选40~50。其可通过现有技术中的测量方法测量:企业标准RIPP 92-90--催化裂化的微反活性试验法《石油化工分析方法(RIPP试验方法)》,杨翠定等人,1990,下文简称为RIPP 92-90。所述催化剂活性是由轻油微反活性(MA)表示,其计算公式为MA=(产物中低于204℃的汽油产量+气体产量+焦炭产量)/进料总量*100%=产物中低于204℃的汽油产率+气体产率+焦炭产率。轻油微反装置(参照RIPP 92-90)的评价条件是:将催化剂破碎成颗粒直径为420~841微米的颗粒,装量为5克,反应原料是馏程为235~337℃的直馏轻柴油,反应温度460℃,重量空速为16小时-1,剂油比3.2。

该方法适用的活性分布相对均匀的催化剂是指加入到催化裂化装置内催化剂初始活性不超过80,优选不超过75,更优选不超过70;该催化剂的自平衡时间为0.1小时~50小时,优选0.1~30小时,更优选0.1~10小时。

所述的催化剂自平衡时间是指催化剂在800℃和100%水蒸气条件(参照RIPP 92-90)下老化达到平衡活性所需的时间。

所述活性分布相对均匀的催化剂例如可经下述3种处理方法而得到:

催化剂处理方法1:

(1)、将新鲜催化剂装入流化床,优选密相流化床,与水蒸汽接触,在一定的水热环境下进行老化后得到活性相对均匀的催化剂;

(2)、将所述活性相对均匀的催化剂加入到相应的反应装置内。

处理方法1例如是这样具体实施的:

将新鲜催化剂装入流化床优选密相流化床内,在流化床的底部注入水蒸汽,催化剂在水蒸汽的作用下实现流化,同时水蒸汽对催化剂进行老化,老化温度为400℃~850℃,优选500℃~750℃,最好为600℃~700℃,流化床的表观线速为0.1米/秒~0.6米/秒,最好为0.15秒~0.5米/秒,老化1小时~720小时优选5小时~360小时后,得到所述的活性相对均匀的催化剂,活性相对均匀的催化剂按工业装置的要求,加入到工业装置,优选加入到工业装置的再生器。

催化剂处理方法2:

(1)、将新鲜催化剂装入流化床优选密相流化床,与含水蒸汽的老化介质接触,在一定的水热环境下进行老化后得到活性相对均匀的催化剂;

(2)、将所述活性相对均匀的催化剂加入到相应的反应装置内。

催化剂处理方法2的技术方案例如是这样具体实施的:

将催化剂装入流化床优选密相流化床内,在流化床的底部注入含水蒸汽的老化介质,催化剂在含水蒸汽的老化介质作用下实现流化,同时,含水蒸汽的老化介质对催化剂进行老化,老化温度为400℃~850℃,优选500℃~750℃,最好为600℃~700℃,流化床的表观线速为0.1米/秒~0.6米/秒,最好为0.15秒~0.5米/秒,水蒸汽与老化介质的重量比为0.20~0.9,最好为0.40~0.60,老化1小时~720小时优选5小时~360小时后,得到所述的活性相对均匀的催化剂,活性相对均匀的催化剂按工业装置的要求,加入到工业装置,优选加入到工业装置的再生器。所述老化介质包括空气、干气、再生烟气、空气与干气燃烧后的气体或空气与燃烧油燃烧后的气体、或其它气体如氮气。所述水蒸气与老化介质的重量比为0.2~0.9,最好为0.40~0.60。

催化剂处理方法3:

(1)、将新鲜催化剂输入到流化床优选密相流化床,同时将再生器的热再生催化剂输送到所述流化床,在所述流化床内进行换热;

(2)、换热后的新鲜催化剂与水蒸汽或含水蒸气的老化介质接触,在一定的水热环境下进行老化后得到活性相对均匀的催化剂;

(3)、将所述活性相对均匀的催化剂加入到相应的反应装置内。

本发明的技术方案例如是这样具体实施的:

将新鲜催化剂输送到流化床优选密相流化床内,同时将再生器的热再生催化剂也输送到所述流化床,在所述流化床内进行换热。在流化床的底部注入水蒸汽或含水蒸汽的老化介质,新鲜催化剂在水蒸汽或含水蒸汽的老化介质作用下实现流化,同时,水蒸汽或含水蒸汽的老化介质对新鲜催化剂进行老化,老化温度为400℃~850℃,优选500℃~750℃,最好为600℃~700℃,流化床的表观线速为0.1米/秒~0.6米/秒,最好为0.15秒~0.5米/秒,老化1小时~720小时,优选5小时~360小时,在含水蒸汽的老化介质的情况下,所述水蒸气与老化介质的重量比为大于0~4,最好为0.5~1.5,得到在所述的活性相对均匀的催化剂,活性相对均匀的催化剂按工业装置的要求,加入到工业装置,优选加入到工业装置的再生器。此外,老化步骤后的水蒸汽进入反应系统(作为汽提蒸汽、防焦蒸汽、雾化蒸汽、提升蒸汽中的一种或几种分别进入催化裂化装置中的汽提器、沉降器、原料喷嘴、预提升段)或再生系统,而老化步骤后的含水蒸汽的老化介质进入再生系统,换热后的再生催化剂返回到该再生器内。所述老化介质包括空气、干气、再生烟气、空气与干气燃烧后的气体或空气与燃烧油燃烧后的气体、或其它气体如氮气。

通过上述处理方法,工业反应装置内的催化剂的活性和选择性分布更加均匀,催化剂的选择性得到明显改善,从而干气产率和焦炭产率明显的降低。

(2)加氢裂化单元

加氢裂化单元包括反应系统和分馏系统,其中反应系统通常包括精制反应器和裂化反应器,反应系统优选固定床反应器,也可以采用其它型式反应器。

催化蜡油先和/或其他二次加工的蜡油混合,然后加热并与氢气混合,依次与加氢精制催化剂和加氢裂化催化剂接触反应,反应生成油气经分馏得到气体、轻石脑油、重石脑油、加氢裂化柴油和加氢裂化尾油馏分。尾油馏分直接作为催化裂化单元的原料或其他单元的原料。

所述的催化蜡油(FGO)为初馏点不小于260℃的馏分,氢含量不低于10.5重%。在更优选的实施方案中,所述催化蜡油为初馏点不小于330℃的馏分,氢含量不低于10.8重%。所述的二次加工的蜡油为焦化蜡油(CGO)、脱沥青油(DAO)及其混合原料油。

所述加氢裂化的工艺条件为:氢分压3.0~20.0MPa,反应温度150~450℃,体积空速0.1~20h-1,氢油比100~2000v/v。本发明中的氢油比均指氢气与催化蜡油的体积比。

所述的加氢处理固定床反应器内的催化剂装填方式依次装填加氢保护剂、加氢脱金属脱硫剂和加氢处理催化剂。以整体催化剂体积为基准,加氢保护剂、加氢脱金属脱硫剂和加氢处理催化剂的装填体积百分数分别为2~20体积%,0~20体积%,60~98体积%。

所述的加氢保护剂的组成为0.5~5.0重%氧化镍、2.0~10.0重%氧化钼、余量为氧化铝载体。

所述的加氢脱金属脱硫剂组成为2.0~7.0重%氧化钴、10.0~30.0重%氧化钼、余量为氧化铝载体。

所述加氢精制催化剂是一种或几种负载在无定型氧化铝或/和硅铝载体上的VIB族或/和VHI族非贵金属催化剂;所述加氢裂化催化剂为一种或几种负载在分子筛上的VIB族或/和VIII族非贵金属催化剂。

所述VIB族非贵金属为钼或/和钨,VIII族非贵金属为镍、钴、铁中的一种或多种。

所述加氢裂化催化剂负载的分子筛选自Y型分子筛、β型分子筛、ZSM-5型分子筛、SAPO系列分子筛中的一种或多种。

优选的加氢裂化催化剂的组成以重量计:氧化铝载体含量为20%~70%,分子筛含量10%~65%,VIB金属氧化物含量为10%~40%,VIII族金属氧化物含量为1%~20%。

(3)其他辅助单元

催化裂化单元的汽油送到汽油加氢脱硫或汽油吸附脱硫装置进行汽油脱硫,分别详见专利CN101314734A或CN1658965A,催化裂化单元的柴油进入柴油脱硫装置进行柴油脱硫;催化裂化单元的再生烟气进入烟气处理装置,进行烟气处理,处理后的烟气排放。

本发明的优点在于:

1、提高不同炼油技术使用效益,强化炼油技术更加合理的集成,为炼油生产过程清洁化和炼油产品清洁化提供了一条新的途径。

2、改善加氢裂化单元原料性质,提高了原料中氢的利用率,从而可以节约石油资源。

3、提高柴油产率和柴油十六烷值。

附图说明

图1为本发明提供的催化裂化和加氢裂化集成工艺方法原则流程示意图。

图2是本发明的优选实施方式的流程示意图。

具体实施方式

下面结合附图进一步说明本发明所提供的方法,但本发明并不因此而受到任何限制。

图1为本发明提供的催化裂化和加氢裂化集成工艺方法原则流程示意图。

高硫蜡油原料进入催化裂化反应单元进行催化裂化反应,将催化裂化反应单元分离得到的催化蜡油馏分输送到加氢裂化单元进行反应,得到石脑油、加氢裂化柴油、加氢裂化尾油等产品,该加氢裂化尾油可以返回到原催化裂化单元,也可以输送到其它反应单元。

图2是本发明的优选实施方式的流程示意图。图2是变径提升管反应器的催化裂化和固定床反应器的加氢裂化集成工艺流程示意图,设备和管线的形状、尺寸不受附图的限制,而是根据具体情况确定。

图2中各编号说明如下:

1、3、4、6、11、13、17、18、21、22、23均代表管线;2为提升管的预提升段;5、7分别为提升管的第一反应区、第二反应区;8为提升管的出口区;9为沉降器,10为旋风分离器,12为汽提器,14为待生斜管,15为再生器,16为再生斜管,19为分离系统,20为加氢裂化装置。

预提升蒸汽经管线1从提升管预提升段2进入,平衡活性较低且活性分布相对均匀的含沸石的再生催化剂经再生斜管16进入提升管预提升段由预提升蒸汽进行提升。预热后的原料油经管线4与来自管线3的雾化蒸汽按一定比例从提升管预提升段进入,与热催化剂混合后进入第一反应区5内,在一定的条件下进行裂化反应。反应物流与来自管线6的冷激剂和/或冷却的催化剂(图中未标出)混合进入第二反应区7,进行二次反应,反应后的物流进入出口区8,该反应区提高物流的线速,使反应物流快速进入气固分离系统中的沉降器9、旋风分离器10,反应产物经管线11去分离系统19。反应后带炭的待生催化剂进入汽提器12,经来自管线13的水蒸汽汽提后由待生斜管14进入再生器15,待生催化剂在来自管线17的空气中烧焦再生,烟气经管线18出再生器,热的再生催化剂经再生斜管16返回提升管底部循环使用。

在分离系统19,分离出干气、液化气,汽油、柴油(图中未标出)和催化蜡油,其中催化蜡油经管线21送到加氢裂化装置20。

来自管线21的催化蜡油与新氢和/或循环氢(图中未标出)混合后,进入加氢裂化装置20进行加氢裂化反应,经分离得到加氢裂化产物(包括气体、轻石脑油、重石脑油和加氢裂化柴油等)和加氢裂化尾油分别经管线22、23抽出,其中加氢裂化尾油经管线23与高硫蜡油混合进入提升管反应器或其它催化裂化装置。

实施例

下面的实施例将对本发明予以进一步说明,但并不因此而限制本发明。实施例、对比例中所使用的原料油性质列于表1。

本发明实例中所用的催化剂沸石是经老化处理的高硅沸石。该高硅沸石是的制备如下:用NaY经SiCl4气相处理及稀土离子交换,制备得到的样品,其硅铝比为18,以RE2O3计的稀土含量为2重量%,然后该样品在800℃,100%水蒸气下进行老化处理。用4300克脱阳离子水将969克多水高岭土(中国高岭土公司产品,固含量73%)打浆,再加入781克拟薄水铝石(山东淄博铝石厂产品,固含量64%)和144ml盐酸(浓度30%,比重1.56)搅拌均匀,在60℃静置老化1小时,保持pH为2~4,降至常温,再加入预先准备好的含800克高硅沸石(干基)和2000克化学水的沸石浆液,搅拌均匀,喷雾干燥,洗去游离Na+,得到催化剂(该新鲜催化剂活性为79,在温度为800℃和100%水蒸气条件下自平衡时间为10h,平衡活性为55)。将得到的催化剂经800℃和100%水蒸汽进行老化10小时,得到活性为55催化剂,代号为A。

对比例中催化裂化催化剂的牌号为CGP-1,CGP-1催化剂经800℃,100%水蒸汽老化12小时,得到活性为62的CGP-1。加氢裂化中所用的加氢精制催化剂的商品牌号分别为RG-10A/RG-10B/RMS/RN-32V,装填比例为4∶4∶15∶77,加氢裂化催化剂商业牌号为RMC-1M。以上催化剂均由中国石化催化剂分公司生产。

实施例1

本实施例说明采用本发明提供的方法,原料A经中型催化裂化装置和中型加氢裂化装置处理后的产物分布和产品性质的情况。

预热的原料A先在中型催化裂化装置进行加工,中型催化裂化装置的反应器的预提升段、第一反应区、第二反应区、出口区总高度为15米,预提升段直径为0.025米,其高度为1.5米;第一反应区直径为0.025米,其高度为4米;第二反应区直径为0.1米,其高度为6.5米;出口区的直径为0.025米,其高度为3米;第一、二反应区结合部位的纵剖面等腰梯形的顶角为45°;第二反应区与出口区结合部位的纵剖面等腰梯形的底角为60°。表1所列的原料A进入该反应器内,在水蒸汽存在下,与热的催化剂A接触并发生反应,分离反应产物得到酸性气、干气、液化气、催化汽油、催化柴油、催化蜡油和焦炭并可以计算其产物分布,待生催化剂经汽提进入再生器,再生催化剂经烧焦后循环使用。在一定的试验时间内,得到一定数量的催化蜡油,为中型加氢处理装置提供原料。加入到中型实验装置内的催化剂A是新鲜催化剂经水热处理后的催化剂(催化剂水热处理方法采用本发明催化剂处理方法1处理,密相流化床,老化温度600℃,流化床的表观线速0.25m/s,100%水蒸气,老化时间20小时),其初始活性为62,然后与装置内的平衡催化剂混合,再经装置内的水热老化,直到装置内的催化剂活性为55。

催化蜡油在中型加氢裂化装置上进行加氢裂化,处理后分离反应产物得到酸性气、少量干气和液化气,石脑油,加氢裂化柴油,加氢裂化尾油。在一定的试验时间内,得到一定数量的加氢裂化尾油,为中型催化裂化装置提供原料。加氢裂化尾油在中型催化裂化装置上加工的操作条件和催化剂完全与原料A相同。三次试验的总产物分布按规定的比例对三套产物分布进行加和处理,催化汽油性质和催化柴油性质按规定的比例对两次中型催化裂化所得到的汽油和柴油进行混兑,然后送样分析所得。试验的操作条件、产品分布和产品的性质列于表2和表3。

对比例1

采用中型试验装置和催化剂与实施例1完全相同,所用的原料油也是表1所列的原料A。只是催化裂化催化剂为常规催化剂CGP-1,另外原料A先在中型加氢处理装置上进行加氢处理,处理后分离反应产物得到酸性气、少量干气、少量的液化气、石脑油、加氢柴油和加氢催化蜡油。在一定的试验时间内,得到一定数量的加氢催化蜡油,为中型催化裂化装置提供原料。加氢蜡油在中型催化裂化装置上加工的操作条件和催化剂完全与原料A相同。将两套中型试验装置的产物分布按规定的比例进行加和计算,得到两次试验总的产物分布,其产物分布列于表2。催化汽油、催化柴油和加氢柴油性质是经送样分析所得到的。试验的操作条件、产品分布和产品的性质列于表2和表3。

从表2和3可以看出,相对于对比例,本发明加工的氢耗为0.93重%,降低了15.45%,液体收率为96.11重%,增加了6.15个百分点,轻柴油产率从28.21重%增加到50.76重%,增加了22.55个百分点,增加幅度为103.34%,催化柴油十六烷值从28增加到55,增加了17个单位,加氢柴油十六烷值高达69。

实施例2

本实施例说明采用本发明提供的方法,原料B经中型催化裂化装置和中型加氢裂化装置处理后的产物分布和产品性质的情况。

预热的原料B先在中型催化裂化装置进行加工,中型催化裂化装置的反应器的预提升段、第一反应区、第二反应区、出口区总高度为15米,预提升段直径为0.025米,其高度为1.5米;第一反应区直径为0.025米,其高度为4米;第二反应区直径为0.1米,其高度为6.5米;出口区的直径为0.025米,其高度为3米;第一、二反应区结合部位的纵剖面等腰梯形的顶角为45°;第二反应区与出口区结合部位的纵剖面等腰梯形的底角为60°。表1所列的原料B进入该反应器内,在水蒸汽存在下,与热的催化剂A接触并发生反应,分离反应产物得到酸性气、干气、液化气、催化汽油、催化柴油、催化蜡油和焦炭并可以计算其产物分布,待生催化剂经汽提进入再生器,再生催化剂经烧焦后循环使用。在一定的试验时间内,得到一定数量的催化蜡油,为中型加氢处理装置提供原料。加入到中型实验装置内的催化剂A是新鲜催化剂经水热处理后的催化剂(催化剂水热处理方法采用本发明催化剂处理方法1处理,密相流化床,老化温度600℃,流化床的表观线速0.25m/s,100%水蒸气,老化时间20小时),其初始活性为62,然后与装置内的平衡催化剂混合,再经装置内的水热老化,直到装置内的催化剂活性为55。

催化蜡油在中型加氢裂化装置上进行加氢裂化,处理后分离反应产物得到酸性气、少量干气和液化气,石脑油,加氢裂化柴油,加氢裂化尾油。在一定的试验时间内,得到一定数量的加氢裂化尾油,为中型催化裂化装置提供原料。加氢裂化尾油在中型催化裂化装置上加工的操作条件和催化剂完全与原料B相同。三次试验的总产物分布按规定的比例对三套产物分布进行加和处理,催化汽油性质和催化柴油性质按规定的比例对两次中型催化裂化所得到的汽油和柴油进行混兑,然后送样分析所得。试验的操作条件、产品分布和产品的性质列于表4和表5。

对比例2

采用中型试验装置和催化剂与实施例1完全相同,所用的原料油也是表1所列的原料B。只是催化裂化催化剂为常规催化剂CGP-1,另外原料B先在中型加氢处理装置上进行加氢处理,处理后分离反应产物得到酸性气、少量干气、少量的液化气、石脑油、加氢柴油和加氢催化蜡油。在一定的试验时间内,得到一定数量的加氢催化蜡油,为中型催化裂化装置提供原料。加氢蜡油在中型催化裂化装置上加工的操作条件和催化剂完全与原料B相同。将两套中型试验装置的产物分布按规定的比例进行加和计算,得到两次试验总的产物分布,其产物分布列于表4。试验的操作条件、产品分布和产品的性质列于表4和表5。

从表4和5可以看出,相对于对比例,本发明加工的氢耗为1.07重%,降低了2.73%,液体收率为94.59重%,增加了7.50个百分点,轻柴油产率从26.70重%增加到53.74重%,增加了27.04个百分点,增加幅度为101.27%,催化柴油十六烷值从26增加到46,增加了20个单位,加氢柴油十六烷值高达65。

表1

  原料油编号  A  B  原料油名称  高硫蜡油  高硫蜡油  密度(20℃),千克/米3  907.7  933.7  运动粘度,毫米2/秒  80℃  11.53  10.67  100℃  7.02  6.47  残炭,重%  0.30  0.67  凝点,℃  37  34  氮,重%  0.12  0.21  硫,重%  1.80  3.26  碳,重%  85.49  85.24  氢,重%  12.34  11.53  馏程,℃  初馏点  242  249  5%  349  342  10%  377  356  50%  446  427  70%  464  466  90%  498  530  终馏点  511  /

表2

  实施例1  对比例1  操作条件  催化单元  反应温度,℃  第一反应区/第二反应区  510/460  550/500  停留时间,秒  2.5  5.5  第一反应区/第二反应区  1.0/1.5  2.0/3.5  剂油比  4.0  5.0  水油比  0.1  0.1  加氢裂化单元  氢分压,MPa  13.0  /  精制反应温度,℃  370  /  裂化反应温度,℃  380  /  氢油体积比,Nm3/m3  700  /  加氢单元  氢分压,MPa  /  8.0  反应温度,℃  /  370  总体积空速,h-1  /  1.5  氢油体积比,Nm3/m3  /  500  产品分布,重%  硫化氢  1.29  1.60  氨气  0.07  0.12  干气  0.79  1.90  液化气  8.03  22.01  汽油  37.32  39.74  其中石脑油  15.52  0.77  催化汽油  21.80  38.97  轻柴油  50.76  28.21  其中加氢柴油  17.51  9.93  催化柴油  33.25  18.28  重油  0.68  1.77  焦炭  1.99  5.75  合计  100.93  101.10  液体收率,重%  96.11  89.96  化学耗氢,重%  0.93  1.10

表3

  实施例1  对比例1  催化汽油性质和组成  辛烷值  RON  95.1  93.6  MON  81.6  81.0  馏程,℃  初馏点~干点  38~200  37~200  硫含量,μg/g  1100  100  族组成,体积%  烯烃  57.2  12.3  芳烃  13.9  25.7  催化柴油性质  密度(20℃),千克/米3  837.9  905.0  硫含量,重%  1.2  0.2  馏程范围,℃  200~350  200~350  十六烷值  55  28  加氢柴油性质  密度(20℃),千克/米3  813.1  856.4  硫含量,μg/g  <20  240  馏程范围,℃  175~350  175~350  十六烷值  69  /

表4

  实施例2  对比例2  操作条件  催化单元  反应温度,℃  第一反应区/第二反应区  510/460  550/500  停留时间,秒  2.5  5.5  第一反应区/第二反应区  1.0/1.5  2.0/3.5  剂油比  4.0  5.0  水油比  0.1  0.1  加氢裂化单元  氢分压,MPa  13.0  /  精制反应温度,℃  370  /  裂化反应温度,℃  380  /  氢油体积比,Nm3/m3  800  /  加氢单元  氢分压,MPa  /  10.0  反应温度,℃  /  370  总体积空速,h-1  /  1.2  氢油体积比,Nm3/m3  /  550  产品分布,重%  硫化氢  2.37  3.35  氨气  0.22  0.21  干气  0.96  2.15  液化气  6.09  21.12  汽油  34.76  39.27  其中石脑油  15.08  0.80  催化汽油  19.68  38.47  轻柴油  53.74  26.70  其中加氢柴油  17.12  6.42  催化柴油  36.62  20.28  重油  0.83  2.22  焦炭  2.10  6.08  合计  101.07  101.10  液体收率,重%  94.59  87.09  化学耗氢,重%  1.07  1.10

表5

  实施例2  对比例2  催化汽油性质和组成  辛烷值  RON  95.6  94.5  MON  81.5  81.5  馏程,℃  初馏点~干点  38~200  37~200  硫含量,μg/g  2000  200  族组成,体积%  烯烃  55.0  16.6  芳烃  14.3  26.7  催化柴油性质  密度(20℃),千克/米3 一种石油烃的高效催化转化方法专利购买费用说明

专利买卖交易资料

Q:办理专利转让的流程及所需资料

A:专利权人变更需要办理著录项目变更手续,有代理机构的,变更手续应当由代理机构办理。

1:专利变更应当使用专利局统一制作的“著录项目变更申报书”提出。

2:按规定缴纳著录项目变更手续费。

3:同时提交相关证明文件原件。

4:专利权转移的,变更后的专利权人委托新专利代理机构的,应当提交变更后的全体专利申请人签字或者盖章的委托书。

Q:专利著录项目变更费用如何缴交

A:(1)直接到国家知识产权局受理大厅收费窗口缴纳,(2)通过代办处缴纳,(3)通过邮局或者银行汇款,更多缴纳方式

Q:专利转让变更,多久能出结果

A:著录项目变更请求书递交后,一般1-2个月左右就会收到通知,国家知识产权局会下达《转让手续合格通知书》。

动态评分

0.0

没有评分数据
没有评价数据
×

打开微信,点击底部的“发现”

使用“扫一扫”即可将网页分享至朋友圈

×
复制