专利摘要
本发明属于复合材料技术领域,提供了一种超高热导率金刚石颗粒增强铝基复合材料的制备方法。采用粒径为403~860μm单一粒径金刚石颗粒装填或者粒径为57~97μm较小金刚石颗粒与粒径为403~860μm较大金刚石颗粒的双粒径金刚石颗粒共同装填,利用气压浸渗法在750~800℃温度、0.5~2.0MPa压力和5~30min保压时间下制备金刚石/铝复合材料。本发明所制得的金刚石/铝复合材料具有优异的导热性能并且具有较小的密度,热导率高达1035W/mK,密度小于3.33g/cm3,可满足航空航天领域大功率器件散热对高导热及轻量化热管理材料的迫切需求。
权利要求
1.一种超高热导率金刚石颗粒增强铝基复合材料的制备方法,其特征在于,包括以下步骤:
1)采用粒径为57~860μm的金刚石颗粒作为增强相;
2)金刚石颗粒装填入型模中并振实,将装填好的型模放在石墨套筒中并将纯铝块放在型模上部,制成完整模具;
3)将模具放置在连接有真空系统和增压充气系统的炉体中,对炉体抽真空,在真空条件下对步骤2)制得的模具进行加热并保温;
4)进行熔渗处理,注入高纯氩气对炉内进行增压充气并保温保压,铝液在高压气体作用下渗入模具中的金刚石颗粒之间孔隙;
5)冷至室温后取出模具脱模,即得金刚石/铝复合材料;
所制备的复合材料中金刚石体积分数为69~76%;
步骤2)所述金刚石颗粒装填要求为:粒径为403~860μm单一粒径金刚石颗粒装填或者粒径为57~97μm较小金刚石颗粒与粒径为403~860μm较大金刚石颗粒的双粒径金刚石颗粒共同装填;其中双粒径金刚石颗粒装填步骤为:先将较大金刚石颗粒装填入型模中并振实,然后将较小金刚石颗粒装填入已振实的型模中,得到装填有不同粒径金刚石颗粒的型模;
所制得的金刚石颗粒增强铝基复合材料热导率为780~1035W/mK,密度小于3.33g/cm
2.如权利要求1所述的制备方法,其特征在于,步骤3)所述真空度低于0.1Pa。
3.如权利要求1所述的制备方法,其特征在于,步骤3)所述模具加热温度为750~800℃,保温时间为5~30min。
4.如权利要求1所述的制备方法,其特征在于,步骤4)所述炉内气体压力为0.5~2.0MPa,在750~800℃下保压5~30min。
说明书
技术领域
本发明属于复合材料技术领域,特别涉及一种超高热导率金刚石颗粒增强铝基复合材料的制备方法。
背景技术
随着电子技术的不断发展,电子元器件的集成度不断提高、功率密度不断增大,器件常因散热效率不高而导致失效。常用的电子封装材料如Al、Cu等金属虽然具有较高的热导率,但是热膨胀系数很大,与半导体芯片的热膨胀系数不匹配,在工作中由于温度变化产生热应力而导致器件失效;Kovar、Invar、W-Cu、SiCP/Al等电子封装材料具有低的热膨胀系数,但是热导率也较低,不能满足高功率电子器件的散热需求,因此急需发展新一代的高导热电子封装材料。金刚石的热导率高达2000W/mK,热膨胀系数仅为0.8×10
金刚石颗粒增强铝基(金刚石/铝)复合材料是研究热点之一。文献采用放电等离子烧结、真空热压烧结、压力浸渗、气压浸渗等不同方法制备金刚石/铝复合材料,其中放电等离子烧结和真空热压烧结技术难以制备出高致密度、高金刚石体积分数和复杂形状的复合材料部件,所制备的金刚石/铝复合材料热导率为321~599W/mK[1,2];压力浸渗虽然工艺流程简单、成本较低,但是制备出的复合材料热导率较低[3,4];气压浸渗制备的金刚石/铝复合材料热导率可达760W/mK[5],为文献报道最高值。目前,用于制备金刚石/铝复合材料的金刚石颗粒粒径小于400μm,金刚石体积分数低于70%,复合材料热导率远低于金刚石热导率,因此金刚石/铝复合材料的热导率仍有很大的提升空间。本发明提出使用粒径超过400μm金刚石颗粒以及双粒径金刚石颗粒混合物作为增强相提高金刚石体积分数,并利用气压浸渗法制备复合材料,突破了金刚石/铝复合材料热导率的文献报道最高值,获得具有超高热导率和低密度的金刚石/铝复合材料,有力推动金刚石/铝复合材料在热管理材料领域的应用。
【参考文献】
[1]Z.Q.Tan,Z.Q.Li,G.L Fan,et al.Fabrication of diamond/aluminumcomposites by vacuum hot pressing:process optimization and thermalproperties,Composites Part B:Engineering,2013,47:173-180.
[2]Z.Q.Tan,Z.Q.Li,G.L Fan,et al.Enhanced thermal conductivity indiamond/aluminum composites with a tungsten interface nanolayer,Materials&Design,2013,47:160-166.
[3]P.W.Ruch,O.Beffort,S.Kleiner,et al.Selective interfacial bondingin Al(Si)-diamond composites and its effect on thermal conductivity,Composites Science and Technology,2006,66:2677-2685.
[4]W.S.Yang,G.Q.Chen,P.P Wang,et al.Enhanced thermal conductivity indiamond/aluminum composites with tungsten coatings on diamond particlesprepared by magnetron sputtering method,Journal of Alloys and Compounds,2017,726:623-631.
[5]Y.Zhang,J.W.Li,L.L.Zhao,et al.Optimisation of high thermalconductivity Al/diamond composites produced by gas pressure infiltration bycontrolling infiltration temperature and pressure,Journal of MaterialsScience,2015,50:688-696.
发明内容
本发明的目的就是克服现有技术的不足,提供一种超高热导率金刚石颗粒增强铝基复合材料的制备方法,通过将较大粒径金刚石颗粒或双粒径金刚石颗粒混合物作为增强相,利用气压浸渗法制备复合材料,获得具有超高热导率和低密度的金刚石/铝复合材料。
本发明的技术方案为:
一种超高热导率金刚石颗粒增强铝基复合材料的制备方法,通过将较大粒径金刚石颗粒或双粒径金刚石颗粒混合物作为增强相,利用气压浸渗法制备所述金刚石颗粒增强铝基复合材料。具体包括如下步骤:
1)采用粒径为57~860μm的金刚石颗粒作为增强相;
2)金刚石颗粒装填入型模中并振实,将装填好的型模放在石墨套筒中并将纯铝块放在型模上部,制成完整模具;
3)将模具放置在连接有真空系统和增压充气系统的炉体中,对炉体抽真空,在真空条件下对步骤2)制得的模具进行加热并保温;
4)进行熔渗处理,注入高纯氩气对炉内进行增压充气并保温保压,铝液在高压气体作用下渗入模具中的金刚石颗粒之间孔隙;
5)冷至室温后取出模具脱模,即得金刚石/铝复合材料。
进一步地,步骤2)所述金刚石颗粒装填要求为:粒径为403~860μm单一粒径金刚石颗粒装填或者粒径为57~97μm较小金刚石颗粒与粒径为403~860μm较大金刚石颗粒的双粒径金刚石颗粒共同装填;其中双粒径金刚石颗粒装填步骤为:先将较大金刚石颗粒装填入型模中并振实,然后将较小金刚石颗粒装填入已振实的型模中,得到装填有不同粒径金刚石颗粒的型模。
进一步地,步骤3)所述真空度低于0.1Pa。
进一步地,步骤3)所述模具加热温度为750~800℃,保温时间为5~30min。
进一步地,步骤4)所述炉内气体压力为0.5~2.0MPa,在750~800℃下保压5~30min。
与其他技术相比,本发明的突出优势为:
1)在气压浸渗制备条件下,较高真空度能够有效抑制金属铝液氧化,并使金刚石颗粒与铝液直接接触;高压气体可以提供各向均匀的成型压力,使得金刚石颗粒在铝基体中均匀分布;控制保温时间可以促进金刚石与铝基体的界面反应,实现两相紧密结合,提高复合材料致密度,并有效提高复合材料热导率。
2)将粒径超过400μm的金刚石颗粒作为增强相并利用气压浸渗法制备复合材料,所制备金刚石/铝复合材料由于金刚石粒径较大从而显著减少单位体积复合材料中的界面面积,降低复合材料界面热阻,使复合材料热导率达到780~854W/mK,金刚石体积分数达到69%,密度小于3.28g/cm
3)将较大粒径金刚石颗粒与较小粒径金刚石颗粒的混合物作为增强相并利用气压浸渗法制备复合材料,可以显著提高金刚石体积分数至74~76%,所制备金刚石/铝复合材料的热导率高达1035W/mK,密度小于3.33g/cm
具体实施方式
下文将详细描述本发明具体实施例。应当注意的是,下述实施例中描述的技术特征或者技术特征的组合不应当被认为是孤立的,它们可以被相互组合从而达到更好的技术效果。
实施例1
将直径为403μm的金刚石颗粒装填入型模中并振实,再将装填好的型模放在石墨套筒中并将纯铝块放在型模上部,将装填好的整个模具放置在炉内的感应加热区,连接真空系统和增压充气系统。开启真空系统,对炉体抽气直至真空度优于0.1Pa。开启循环水,启动感应加热器,将模具加热至800℃并保温30min。开启增压充气系统向炉内注入高纯氩气,当炉内气体压力达到l.0MPa后,关闭增压充气系统并在800℃下保压20min。停止加热,当炉温降至室温时关闭循环水,取出模具脱模,获得直径为20mm、厚度为4mm的圆片状金刚石/铝复合材料产品。所制备的金刚石/铝复合材料热导率为846W/mK,金刚石体积分数为69%,密度为3.27g/cm
实施例2
将直径为630μm的金刚石颗粒装填入型模中并振实,再将装填好的型模放在石墨套筒中并将纯铝块放在型模上部,将装填好的整个模具放置在炉内的感应加热区,连接真空系统和增压充气系统。开启真空系统,对炉体抽气直至真空度优于0.1Pa。开启循环水,启动感应加热器,将模具加热至800℃并保温30min。开启增压充气系统向炉内注入高纯氩气,当炉内气体压力达到l.0MPa后,关闭增压充气系统并在800℃下保压20min。停止加热,当炉温降至室温时关闭循环水,取出模具脱模,获得直径为20mm、厚度为4mm的圆片状金刚石/铝复合材料产品。所制备的金刚石/铝复合材料热导率为854W/mK,金刚石体积分数为69%,密度为3.27g/cm
实施例3
将直径为860μm的金刚石颗粒装填入型模中并振实,再将装填好的型模放在石墨套筒中并将纯铝块放在型模上部,将装填好的整个模具放置在炉内的感应加热区,连接真空系统和增压充气系统。开启真空系统,对炉体抽气直至真空度优于0.1Pa。开启循环水,启动感应加热器,将模具加热至800℃并保温30min。开启增压充气系统向炉内注入高纯氩气,当炉内气体压力达到l.0MPa后,关闭增压充气系统并在800℃下保压20min。停止加热,当炉温降至室温时关闭循环水,取出模具脱模,获得直径为20mm、厚度为4mm的圆片状金刚石/铝复合材料产品。所制备的金刚石/铝复合材料热导率为780W/mK,金刚石体积分数为69%,密度为3.27g/cm
实施例4
将直径为630μm的金刚石颗粒装填入型模中并振实,然后将直径为57μm的金刚石颗粒装填入已振实的型模中,得到装填有不同粒径金刚石颗粒的型模,将装填好的型模放在石墨套筒中并将纯铝块放在型模上部,再将装填好的整个模具放置在炉内的感应加热区,连接真空系统和增压充气系统。开启真空系统,对炉体抽气直至真空度优于0.1Pa。开启循环水,启动感应加热器,将模具加热至800℃并保温30min。开启增压充气系统向炉内注入高纯氩气,当炉内气体压力达到l.0MPa后,关闭增压充气系统并在800℃下保压20min。停止加热,当炉温降至室温时关闭循环水,取出模具脱模,获得直径为20mm、厚度为4mm的圆片状金刚石/铝复合材料产品。所制备的金刚石/铝复合材料热导率为969W/mK,金刚石体积分数为74%,密度为3.31g/cm
实施例5
将直径为860μm的金刚石颗粒装填入型模中并振实,然后将直径为97μm的金刚石颗粒装填入已振实的型模中,得到装填有不同粒径金刚石颗粒的型模,将装填好的型模放在石墨套筒中并将纯铝块放在型模上部,再将装填好的整个模具放置在炉内的感应加热区,连接真空系统和增压充气系统。开启真空系统,对炉体抽气直至真空度优于0.1Pa。开启循环水,启动感应加热器,将模具加热至800℃并保温30min。开启增压充气系统向炉内注入高纯氩气,当炉内气体压力达到l.0MPa后,关闭增压充气系统并在800℃下保压20min。停止加热,当炉温降至室温时关闭循环水,取出模具脱模,获得直径为20mm、厚度为4mm的圆片状金刚石/铝复合材料产品。所制备的金刚石/铝复合材料热导率为1035W/mK,金刚石体积分数为76%,密度为3.32g/cm
本文虽然已经给出了本发明的几个实施例,但是本领域的技术人员应当理解,在不脱离本发明精神的情况下,可以对本文的实施例进行改变。上述实施例只是示例性的,不应以本文的实施例作为本发明权利范围的限定。
一种超高热导率金刚石颗粒增强铝基复合材料的制备方法专利购买费用说明
Q:办理专利转让的流程及所需资料
A:专利权人变更需要办理著录项目变更手续,有代理机构的,变更手续应当由代理机构办理。
1:专利变更应当使用专利局统一制作的“著录项目变更申报书”提出。
2:按规定缴纳著录项目变更手续费。
3:同时提交相关证明文件原件。
4:专利权转移的,变更后的专利权人委托新专利代理机构的,应当提交变更后的全体专利申请人签字或者盖章的委托书。
Q:专利著录项目变更费用如何缴交
A:(1)直接到国家知识产权局受理大厅收费窗口缴纳,(2)通过代办处缴纳,(3)通过邮局或者银行汇款,更多缴纳方式
Q:专利转让变更,多久能出结果
A:著录项目变更请求书递交后,一般1-2个月左右就会收到通知,国家知识产权局会下达《转让手续合格通知书》。
动态评分
0.0