专利转让平台_买专利_卖专利_中国高校专利技术交易-买卖发明专利上知查网

全部分类
全部分类
多重火花放电发生器及使用它制造纳米微粒结构体的方法

多重火花放电发生器及使用它制造纳米微粒结构体的方法

IPC分类号 : B01J19/08,B82B1/00,B82B3/00

申请号
CN201380003736.8
可选规格
  • 专利类型: 发明专利
  • 法律状态: 有权
  • 申请日: 2013-12-19
  • 公开号: 104302386A
  • 公开日: 2015-01-21
  • 主分类号: B01J19/08
  • 专利权人: 多次元能源系统研究集团 ; 首尔大学校产学协力团

专利摘要

本发明涉及一种火花放电发生器。本发明的火花放电系统包括多个柱状电极,以及在对应于所述柱状电极的位置处具有多个出口孔的接地板。所述火花放电发生器的使用使得大面积的三维形状纳米结构体阵列以均匀且快速的方式制造。

权利要求

1.一种火花放电发生器,其特征在于,包括:

具有进气口和排气口的放电室;

设置在所述放电室内的多个柱状电极;

设置在所述放电室内的接地板,其中所述接地板在与所述柱状电极对应的位置处具有多个出口孔;以及

衬底支撑件,所述衬底支撑件与所述柱状电极和所述接地板相对设置。

2.根据权利要求1所述的火花放电发生器,其特征在于,每个所述柱状电极具有朝向所述接地板的对应出口孔的尖部,所述尖部为尖状、圆形或扁平状。

3.根据权利要求2所述的火花放电发生器,其特征在于,每个所述柱状电极的尖部与所述接地板的对应出口孔以预设定的距离隔开;或所述每个柱状电极的尖部与所述对应出口孔位于相同位置;或每个所述柱状电极的尖部穿过对应出口孔。

4.根据权利要求1所述的火花放电发生器,其特征在于,所述接地板的出口孔的直径增大或减小以调节所述火花放电发生器排气口处的流速,以使得所述微粒的聚合程度可控。

5.根据权利要求1所述的火花放电发生器,其特征在于,还包括位于进气口处的电晕放电器。

6.根据权利要求1所述的火花放电发生器,其特征在于,设有多个进气口和排出口。

7.根据权利要求2所述的火花放电发生器,其特征在于,所述柱状电极的尖部同时产生微粒和离子。

8.根据权利要求1所述的火花放电发生器,其特征在于,所述接地板和所述衬底支撑件之间的距离可调节。

9.根据权利要求1所述的火花放电发生器,其特征在于,还包括内筒,所述内筒能够调节进气口处的气体流入速率以控制微粒的聚合程度。

10.根据权利要求1所述的火花放电发生器,其特征在于,采用包括多个电阻和多个电容的电路作为恒定高压电源。

11.根据权利要求1所述的火花放电发生器,其特征在于,所述反应室包括窗口,用户通过所述窗口观看火花放电状态。

12.一种采用如权利要求1-11中任一项所述的火花放电发生器形成三维形状纳米结构体阵列的方法。

说明书

技术领域

本发明涉及一种火花放电发生器以及采用该种火花放电发生器制造纳米微粒结构体的方法。

背景技术

纳米刻图(nanopatterning)技术是在选择性控制下,带电纳米微粒沉积到所需位置以制造微米及纳米尺寸结构体的技术。该纳米刻图技术被认为是有助于在下一代工业中起主导作用的量子装置及纳米生物装置的发展。

作为用于对带电纳米微粒进行刻图的这种技术的一个例子,已知方法中,衬底通过电子束或离子束进行带电,并随后沉积极性相反的带电纳米微粒。然而,由于该衬底采用串联方式(series mode)进行带电,使得该方法很耗时。由于衬底表面采用电子束或离子束进行带电,因此要求该衬底是非导电的。

另一个已知技术是,在支撑件上形成光阻剂(photoresist),并通过合适的处理例如光刻蚀对所述光阻剂进行刻图;随后采用静电力仅将带电纳米微粒引入并沉积在该图案上,而没有离子积聚过程。该技术能够对在蒸气状态下制备的(prepared)高纯度纳米微粒进行刻图,然而却不能在光阻剂图案上积聚离子,使得大量的纳米微粒沉积在非所需的位置上,即沉积在光阻剂表面上,以及沉积在导电衬底上。

在很多气相(vapor-phase)合成方法中,火花放电是用于制备纳米尺寸微粒的高效方法。火花放电采用简单的系统产生带电气溶胶,由此有助于纳米结构体的集合(assembly)。火花放电有很多不同类型的方法。使用最广泛的棒-棒(rod-to-rod)型方法最近已经应用到双金属或混合金属纳米微粒的合成或者是纳米线(nanowires)的生长。已知火花放电发生器产生纳米尺寸的微粒。然而,尺寸为10nm或更小的带电气溶胶容易导致双极性纳米微粒的静电聚合。在火花放电发生器的使用中防止纳米微粒的这种聚合并产生更小尺寸的带电气溶胶是必要的。

已知通过改变运行参数例如火花频率、火花能量以及运载气流来减少火花放电发生器内微粒的聚合的方法。

在对上述方法的努力研究中,本申请人提出了一种用于通过对纳米微粒聚焦刻图(focused patterning)来制造二维或三维形状纳米微粒结构体的方法(参见公开号为10-2009-0089787、公开日为2009年8月24日的韩国专利)。根据该方法,通过对针-板(pin-to-plate)型或尖-板(tip-to-plate)型电极结构的火花放电同时产生的双极性带电纳米微粒以及离子被送入容纳有图案衬底的反应器内,随后施加电场,以高效地制造二维或三维形状的纳米微粒结构体,而不管纳米微粒或离子的极性。

针-板或尖-板型结构具有不对称结构,其中该不对称结构由作为阳极的具有尖部的针,以及具有中心出口(outlet)的接地板(ground plate)构成。已知由针-板结构产生的带电气溶胶相比于由棒-棒结构产生的带电气溶胶具有小得多的微粒尺寸,更少的聚合,并具有更窄的微粒直径分布。

然而,至今报道的针-板结构只能在有限的区域内形成纳米结构体,例如只能在直径约为8mm或更小的区域内形成纳米结构体。因此,需要研发能够在大面积内高速地形成纳米结构体的针-板结构以用于工业应用。

【现有技术文件】

【专利文件】

(专利文件1)公开号为10-2009-0089787(公开日为2009年8月24日)的韩国专利。

发明内容

技术问题

因此,本发明提供一种火花放电发生器,该种火花放电发生器适用于在大面积高速地形成均匀的纳米结构体;本发明还提供了一种采用火花放电发生器的用于制造纳米结构体的方法。

技术方案

本发明的一方面提供了一种火花放电发生器,包括具有进气口和排出口的放电室;设置在所述放电室内的多个柱状电极;设置在所述放电室内的接地板(ground plate),其中所述接地板在与所述柱状电极对应的位置处具有多个出口孔;以及衬底支撑件,所述衬底支撑件与所述柱状电极和所述接地板相对设置。

根据本发明一优选实施例,每个所述柱状电极具有朝向所述接地板的对应出口孔的尖部,所述尖部为尖状、圆形或扁平状。

每个所述柱状电极的尖部与所述接地板的对应出口孔间隔预定的距离;或所述每个柱状电极的尖部与所述对应出口孔位于相同位置;或每个所述柱状电极的尖部穿过对应的出口孔。

所述接地板的出口孔的直径增大或减小以调整所述火花放电发生器排气口处的流速,以使得所述微粒的聚合程度可控。

根据本发明一优选实施例,所述火花放电发生器还包括位于进气口处的电晕放电器。

根据本发明一优选实施例,所述柱状电极的尖部同时产生微粒和离子。

根据本发明一优选实施例,所述火花放电发生器还包括内筒,所述内筒能够调节所述接地板和所述衬底支撑件之间的距离,并调节进气口处的气体流入速率以控制微粒的聚合程度。

优选地,本发明的火花放电发生器采用包括多个电阻和多个电容的电路作为恒定高压电源。

优选地,所述反应室包括窗口,用户通过所述窗口观看火花放电状态。

本发明的另一方面提供了一种采用所述火花放电发生器均匀地形成三维形状纳米结构体阵列的方法。

有益效果

本发明的火花放电发生器包括两个或两个以上柱状电极,以及具有多个对应于所述柱状电极的出口孔的接地板。由于这种结构,使得火花放电发生器能够有效地在大面积上喷射微粒。因此,大量的微粒能够快速地沿着在大面积衬底的整个区域上形成的电场而移动,使得纳米结构体能够在大面积衬底上快速地制造。总之,根据本发明,纳米结构体阵列可以通过火花放电按照工业适用规模进行生产。

附图说明

图1是根据本发明一优选实施例的火花放电系统的示意图;

图2概略性地示出根据本发明典型实施例的柱状电极尖部(tip)的形状;

图3概略性地示出根据本发明典型实施例的接地板的出口孔(outlet hole)与柱状电极的相对位置;

图4示出了根据本发明实施例的在大面积上形成的纳米结构体阵列样品的图像,并示出了该样品的SEM图;

图5示出了根据本发明实施例的在衬底不同位置处所制得的纳米结构体阵列尺寸的变化;

图6是采用单火花(single-spark)放电发生器在大面积上形成的比较(comparative)纳米结构体阵列的SEM图;

图7示出了在衬底不同位置处测得的比较纳米结构阵列尺寸的变化;

图8示出了采用本发明的多重火花放电发生器在不同流速下形成的结构体形状的对比示意图(每个光阻剂的开口直径为2微米);

图9是示出了采用本发明的多重火花放电发生器在不同流速下形成的结构体的微粒直径分布的示意图。

具体实施方式

以下结合附图对并发明进行更详细地说明。

图1是根据本发明一优选实施例的火花放电系统的结构示意图。

如图1所示,本发明的火花放电系统包括多个柱状电极以及具有多个出口孔的接地板;其中,多个出口孔的位置与柱状电极相对应。

柱状电极可能包括针电极、电极丝以及棒电极;并对它们的形状不做具体限定。

图1示出了针电极作为柱状电极。针电极的尖部的形状为尖状,但该针电极的尖部并不局限于这种形状。具体地,如图2所示,柱状电极的尖部可以有不同的形状,例如,(a)尖状、(b)圆形或(c)扁平状。

柱状电极的尺寸(例如,直径以及长度)并不具体限定,并可根据预期应用或使用适当确定该柱状电极的尺寸。

例如,每个针电极的直径可以从几微米到几毫米;例如从0.01到20mm,但其直径并不局限于该范围内。每个尖部的曲率半径可以是从几微米到几毫米,例如0.01mm或者更多,但该曲率半径并不局限于这里的范围。

接地板的出口孔的形成使之对应于各自的柱状电极。每个出口孔的直径可以是在从几微米到几毫米的范围内,例如从0.1到25mm范围内;但并不局限于该范围。每个出口孔的直径可以增大或减小以调节火花放电发生器出口的流速,从而可以控制微粒的聚合程度。

对柱状电极和接地板之间的距离没有施加特定的限制。

如图3所示,(a)柱状电极10可以以预设定距离与接地板20隔开;(b)该柱状电极10可以与接地板20设置在相同的位置;或者(c)该柱状电极10可以穿过接地板20的出口孔30。

如图3所示,柱状电极10和接地板的出口孔30之间的距离可以为从几微米到几十毫米,例如,从0.01到10mm,但并不局限于该范围。

另一方面,在柱状电极10和接地板20处于相同位置(图3(b))或在柱状电极10插入或穿过将接地板20的出口孔30(图3(c))的例子中,柱状电极的设置使得该柱状电极不会与接地板相接触。

柱状电极的数量并不受到限制。当在衬底的每20到50mm2的区域内设置一个或三个柱状电极时,纳米结构体可以在衬底的整个区域内均匀地形成。

柱状电极和接地板的材料并不具体限定。例如,柱状电极和接地板可以由纳米微粒前驱体(nanoparticle precursor)制成。纳米微粒前驱体可以是:金、铜、锡、铟、ITO、石墨或银的导电材料;覆盖有氧化镉、氧化铁或氧化锡的非导电材料的导电材料;或是硅、GaAs或CdSE的半导体材料。

用于火花放电的电路具有恒定高压电源结构,包括高压(HV)电源、外部电容(C)以及电阻(R);但并不局限于这种结构。如果需要,包括多个电阻以及多个电容的电路也可以用于微粒尺寸的控制。

采用火花放电器的用于制造纳米结构体阵列的方法在公开号为10-2009-0089787的韩国专利中具体公开;由此省略了对该方法的详细说明。为了实现更有效的离子产生以及离子沉积,本发明的系统进一步包括电晕放电器,如图1所示。每个电晕放电器中可以被施加范围从1kV到10kV的电压。

运载气体例如氮气、氦气或氩气的流速可以取决于插入反应器内的接地板的出口孔的直径;该直径成为能够控制由多重火花产生的微粒聚合的参数。

运载气体例如氮气、氦气或氩气的流速可以取决于插入反应器内的内筒(inner cylinder)的直径,其中该直径成为能够控制由多重火花产生的微粒聚合的参数。

由于柱状电极的尖部能够同时产生微粒和离子,柱状电极的尖部可影响结构体的形成。柱状电极的尖部可以根据需要设为尖状、圆形或者扁平状。

在本发明的系统中,可以调整板电极和样品(或衬底)之间的距离以控制大面积纳米结构体阵列以及形成纳米结构体的区域的均匀性。

可以通过改变进口的位置对微粒的移动路径进行控制;其中,气体通过该进口流入多重火花放电发生器内。根据本发明的一个优选实施例,可以设置多个进气口以及排气口。在本例中,优选地可以在大面积衬底上形成均匀的纳米结构体。作为替代方案,也可以通过改变进气口以及排气口的位置对微粒的移动路径进行控制。

优选地,本发明的系统包括窗口,用户通过该窗口可以看到火花放电的状态;且样品(或衬底)设置在火花放电室的中心。

本发明的系统方便使用,以在大面积内,例如0.25cm2或更大的面积内形成三维形状纳米结构体阵列。

结合以下具体例子对本发明进行说明。然而,这些例子仅用于示范,而不意图限制本发明的范围。

例子1

在例子1-3中使用图1所示的针-板型火花放电器,而在比较例子1-3中使用具有一个尖部的火花放电器。

放电室的体积为727cm3、内径为11.5cm、高度为7cm。采用了至少16个针电极;其中每个针电极直径为4mm。每个尖部的曲率半径约为0.13mm。接地板的出口孔对应于各自的针电极而形成,且每个出口孔的直径为1mm。针电极和接地极(ground electrode)由铜制成。电极之间的距离调整为2.5mm。采用氮气作为运载气体。运载气体的流速调整为0.03m/s。

在用于火花放电的电路中,HV(Bertan 205B,最大电压为10kV)通过20莫姆(Mohm)电阻与针电极串联连接。电容量为2nF的电容与电极并联连接。在4kV、5kV以及6kV的不同HV电压下进行试验。而电晕放电器在4kV下操作。

纳米微粒通过穿设有直径为2微米的孔、且相邻两孔之间的孔距为4微米的光阻剂在纳米图案硅衬底(6cm×6cm)上沉积1小时30分钟。

所获得的纳米结构体阵列样品的图像(a)以及样品的SEM图像(b)如图4和图5所示(HV电压为4kV)。

例子2

重复例子1的步骤,除了将氮气的流速改为0.06m/s。

例子3

重复例子1的步骤,除了将氮气的流速改为0.09m/s。

比较例子1-3

以与例子1-3相同的方式制造纳米结构体(其中,氮气的流速不同),除了这里采用带有单个尖部的火花放电器。

试验结果

采用具有微分迁移率分析器(DMA)、双极性充电器(bipolar charger)、流量控制系统、凝聚粒子计数器(CPC)以及数据转换系统的扫描电迁移率微粒物粒径谱仪(SMPS)来测量纳米结构体的尺寸。采用多重火花放电发生器制得的纳米结构体阵列的形状与尺寸通过采用场发射扫描电子显微镜(SUPRA 55VP)进行测量。

图4示出了(a)在例子1的大面积上形成的纳米结构体阵列样品的图像,以及;(b)样品的SEM图像。

图5示出了例子3(电压为4kV)中获得的纳米结构体的高度和直径分布。已发现所制得的纳米结构体在垂直和水平方向甚至在整个大面积区域内均具有均匀的分布。

图6是采用单火花放电发生器在大面积上形成的比较纳米结构体阵列的SEM图像。

图7示出了在衬底上不同位置处测量的比较纳米结构体阵列尺寸的变化。设置在远离尖部中心的结构体不完全形成,并由此缺乏均匀性。

图8示出了例子1、2和3(电压为4kV)所获得的纳米结构体的SEM图。随着流速的增加,微粒的聚合程度减低,使得结构体的表面光滑。

图9示出了在电压为4kV且流速变化的情况下微粒的尺寸分布。随着流速的增加,微粒的聚合程度降低,使得大微粒的数量减少。换言之,图9的结果证明了微粒的聚合可以通过改变流速来控制。

产业上的可用性

本发明的火花放电发生器包括两个或两个以上柱状电极,以及具有多个对应于所述柱状电极的出口孔的接地板。由于这种结构,使得火花放电发生器能够有效地在大面积上喷射微粒。因此,大量的微粒能够快速地沿着在大面积衬底的整个区域上形成的电场而移动,使得纳米结构体能够在大面积衬底上快速地制造。总之,根据本发明,纳米结构体阵列可以通过火花放电按照工业适用规模进行生产。

多重火花放电发生器及使用它制造纳米微粒结构体的方法专利购买费用说明

专利买卖交易资料

Q:办理专利转让的流程及所需资料

A:专利权人变更需要办理著录项目变更手续,有代理机构的,变更手续应当由代理机构办理。

1:专利变更应当使用专利局统一制作的“著录项目变更申报书”提出。

2:按规定缴纳著录项目变更手续费。

3:同时提交相关证明文件原件。

4:专利权转移的,变更后的专利权人委托新专利代理机构的,应当提交变更后的全体专利申请人签字或者盖章的委托书。

Q:专利著录项目变更费用如何缴交

A:(1)直接到国家知识产权局受理大厅收费窗口缴纳,(2)通过代办处缴纳,(3)通过邮局或者银行汇款,更多缴纳方式

Q:专利转让变更,多久能出结果

A:著录项目变更请求书递交后,一般1-2个月左右就会收到通知,国家知识产权局会下达《转让手续合格通知书》。

动态评分

0.0

没有评分数据
没有评价数据
×

打开微信,点击底部的“发现”

使用“扫一扫”即可将网页分享至朋友圈

×
复制
用户中心
我的足迹
我的收藏

您的购物车还是空的,您可以

  • 微信公众号

    微信公众号
在线留言
返回顶部