IPC分类号 : C01G55/00,C07F17/00,G01N21/65,B82Y15/00
专利摘要
提供一种表面增强拉曼光谱(SERS)标记偶联物。该SERS标记偶联物包括金属纳米颗粒和连接至该金属纳米颗粒表面的有机金属材料。还提供包括多个该SERS标记偶联物的生物传感器和形成该SERS标记偶联物的方法。
权利要求
1.一种表面增强拉曼光谱(SERS)标记偶联物,其包括金属纳米颗粒和连接至所述金属纳米颗粒表面的有机金属材料。
2.根据权利要求1所述的SERS标记偶联物,其中所述有机金属材料包括或基本上由金属羰基化合物构成。
3.根据权利要求2所述的SERS标记偶联物,其中所述金属羰基化合物包括或基本上由金属羰基簇合物构成。
4.根据权利要求3所述的SERS标记偶联物,其中所述金属羰基簇合物包括选自元素周期表第6至第8族的金属。
5.根据权利要求3所述的SERS标记偶联物,其中所述金属羰基簇合物包括或基本上由锇羰基、钼羰基、钽羰基、钌羰基或其混合物构成。
6.根据权利要求1所述的SERS标记偶联物,其中所述有机金属材料包括或基本上由以下化合物中的至少一种构成:
其中M=Os、Mo、W或Ru。
7.根据权利要求1所述的SERS标记偶联物,其中所述有机金属材料包括或基本上由以下化合物中的至少一种构成:
8.根据权利要求1所述的SERS标记偶联物,其中所述金属纳米颗粒涂覆有或由选自贵金属、铜、铝及其合金组成的组的金属构成。
9.根据权利要求1所述的SERS标记偶联物,其中所述金属纳米颗粒涂覆有或由金、银或其合金构成。
10.根据权利要求1所述的SERS标记偶联物,其中所述有机金属材料通过所述金属纳米颗粒和包含在所述有机金属材料中的金属原子之间的金属键合连接至所述金属纳米颗粒的表面。
11.根据权利要求1所述的SERS标记偶联物,其中所述有机金属材料通过所述金属纳米颗粒和包含在所述有机金属材料中的有机配体之间的相互作用连接至所述金属纳米颗粒。
12.根据权利要求11所述的SERS标记偶联物,其中包含在所述有机金属材料中的有机配体包括选自由巯基、羧基和氨基构成的组的官能团,用于使所述有机金属材料连接至所述金属纳米颗粒的表面。
13.根据权利要求1所述的SERS标记偶联物,其偶联物还包括选自由二氧化硅(Si02)、用戊二醛交联的牛血清白蛋白(BSA)、硫醇化的DNA、硫醇化的聚乙二醇(PEG)及其混合物构成的组的材料,其中所述材料连接至所述金属纳米颗粒的表面。
14.根据权利要求13所述的SERS标记偶联物,其中所述材料包括或基本上由硫醇化的聚乙二醇(PEG)构成。
15.根据权利要求13所述的SERS标记偶联物,其偶联物还包括与所述材料偶联的分析物结合分子。
16.根据权利要求15所述的SERS标记偶联物,其中所述分析物结合分子选自由抗体、抗体片段或抗体样分子构成的组。
17.根据权利要求1所述的SERS标记偶联物,其中所述SERS标记偶联物具有大约30nm至大约100nm的直径。
18.根据权利要求1所述的SERS标记偶联物,其中所述SERS标记偶联物适于提供1800cm-1至2200cm-1区域内的SERS信号。
19.一种生物传感器,所述生物传感器包括多个SERS标记偶联物,每个SERS标记偶联物包括金属纳米颗粒和连接至所述金属纳米颗粒表面的有机金属材料。
20.一种形成表面增强拉曼光谱(SERS)标记偶联物的方法,其中所述表面增强拉曼光谱(SERS)标记偶联物包括金属纳米颗粒和连接至所述金属纳米颗粒表面的有机金属材料,所述方法包括:
a)将包含金属纳米颗粒的悬浮液与包含有机金属材料的溶液混合,以形成混合物;以及
b)孵育所述混合物,使得所述有机金属材料连接至所述金属纳米颗粒的表面,以形成SERS标记偶联物。
21.根据权利要求20所述的方法,其中所述包含金属纳米颗粒的悬浮液基本上由分散于乙醇中的如下金属纳米颗粒构成:所述金属纳米颗粒涂覆有或由选自贵金属、铜、铝及其合金组成的组的金属构成。
22.根据权利要求21所述的方法,其中所述包含有机金属材料的溶液基本上由分散在乙醇中的金属羰基簇合物构成。
说明书
相关申请的交叉引用
本申请主张2012年5月31日递交的新加坡专利申请No.201204008-5的优先权,出于所有目的通过引用将其全部内容并入本文。
技术领域
本发明属于光谱和分子诊断领域。特别地,本发明涉及表面增强拉曼光谱(SERS)标记偶联物(marker conjugate)和制备该SERS标记偶联物的方法。
背景技术
已经开发了分析物检测用的诸如红外(IR)、标准拉曼光谱和表面增强拉曼光谱(SERS)的振动光谱技术。
尽管这些光谱技术可被认为利用容易获得的仪器确立已久的,但是关于这些技术在生物医学研究和应用中的使用仍有未解决的问题。例如,对于活细胞成像的IR检测的主要障碍在于,来自水在大约1,600cm-1处的强吸收峰的生成光谱的干扰。相比较而言,拉曼光谱能够提供更好的空间分辨率而受到水的最小的干扰。然而,它却只有大约10-31至10-26cm2每分子的低散射截面。该较低的散射截面使分析物检测用的较高含量的生物标识(biotag)的使用成为必须,这会引起导致细胞死亡的细胞毒性,因此限制了拉曼光谱在临床应用中的使用。
由于通过被吸收的SERS活性分析物分子与金属基底表面的相互作用的拉曼光谱强度的增强,使SERS已经逐渐成为分析物检测用的最灵敏的技术之一。在SERS中,由于纳米结构表面的强表面等离子共振,在胶质金纳米粒或胶质银纳米粒上吸附的分子的拉曼信号可增强几个数量级,典型地,在106至1014的范围内。这已经成功地适用于化学传感应用(以较低的浓度但是具有较好的检测限),并且最好的例证是它在DNA检测、癌症诊断和细胞分子检测中的应用。
形成SERS纳米标识(nanotag)的本领域方法的当前状态包括在金属胶质颗粒上固定拉曼活性染料(拉曼报告子(Raman reporter))。形成的SERS纳米标识与靶分析物(target analyte)上的特定位置进行生物偶联(bioconjugated)。该纳米颗粒拉曼报告子还可以被称作拉曼标识(Ranman tag),并且可以提供用 于在生物成像和传感应用中的多重检测(multiplexing)、靶向(targeting)和追踪(tracking)的平台。报告分子(reporter molecule)和金属纳米颗粒的类型是拉曼标识的敏感度的主要决定因素。报告分子的实例包括三苯基次甲基(TM)化合物,诸如异硫氰基孔雀石绿(MGITC)和结晶紫(CV)。
尽管如此,SERS纳米标识其自身能够在SERS下发出信号且在800cm-1至1800cm-1区域内具有信号。这转化成在由SERS报告子和分析物产生的峰之间重叠的峰,因为大多数生物分子信号存在于相同的区域。结果,阻碍了使用SERS的生物分子的鉴定。
鉴于此,需要一种可用于使用表面增强拉曼光谱(SERS)来检测分析物并解决至少一个上述问题的改进的化合物以及形成该化合物的方法。
发明内容
在第一方面中,本发明涉及表面增强拉曼光谱(SERS)标记偶联物,其包括金属纳米颗粒和连接至该金属纳米颗粒表面的有机金属材料。
在第二方面中,本发明涉及生物传感器,其包括多个根据第一方面的SERS标记偶联物。
在第三方面中,本发明涉及形成根据第一方面的表面增强拉曼光谱(SERS)标记偶联物的方法。
附图说明
通过参照结合非限制性实例和附图的详细说明将更好地理解本发明,其中:
图1显示描绘根据各种实施方案的形成表面增强拉曼光谱(SERS)标记偶联物的方法的示意图。在示出的实施方案中,形成了锇羰基簇合物涂覆金纳米颗粒的SERS标记偶联物(本文中称作Os-Au纳米颗粒或OM-NP构建体)。作为有机金属材料的实例(或者更具体地,为金属羰基簇合物)的Os3(CO)10(μ-H)2连接至作为金属纳米颗粒实例的金纳米颗粒的表面。可以通过有机金属材料和金属纳米颗粒的金属原子之间的金属-金属相互作用,或通过有机金属材料的有机配体和金属纳米颗粒之间的有机配体-金属相互作用而使有机金属材料连接至金属纳米颗粒。
图2(A)至(D)示出了根据一个实施方案的用于制备有机金属材料-金属纳米颗粒(OM-NP构建体)的示意图。在图2(A)示出的实施方案中,示出 了Os3(CO)10(μ-H)2金属羰基簇合物。在图2(B)中,使用Os3(CO)10(μ-H)2簇合物和金纳米颗粒之间的强相互作用,使多个Os3(CO)10(μ-H)2金属羰基簇合物连接至金纳米颗粒以形成OM-NP构建体。形成的OM-NP构建体用EGFR抗体的结合配体(在图中表示为L)和聚乙二醇(PEG)进行功能化,以形成OM-NP(PEG)-L构建体。如能够从图2(C)中观察到的,OM-NP(PEG)-L构建体显示了在水溶液中的可检测的CO信号(位于大约2000cm-1处的峰)。图2(D)示出了将OM-NP(PEG)-L构建体加至活细胞以用于随后的SERS分析。为了对比目的,图2(E)至图2(F)示出了在水溶液中分散Os3(CO)10(μ-H)2金属羰基簇合物的示意图。如由在图2(F)中的大约2000cm-1处的峰不存在所表明的,包括Os3(CO)10(μ-H)2金属羰基簇合物的水溶液不具有可检测的CO信号。图2的(E)中的Os3(CO)10(μ-H)2金属羰基簇合物不适于加至活细胞以用于随后的SERS分析。
图3(A)示出了Os-Au纳米颗粒(OM-NP构建体)和生物偶联的EGFR-PEG-Os-Au纳米颗粒(OM-NP(PEG)-L构建体)在水溶液中的SERS光谱。Y-轴:计数(counts);X-轴:用cm-1表示的拉曼位移。如能够从图中观察到的,在水溶液中存在来自Os-Au纳米颗粒的可检测的拉曼散射信号。大约1960cm-1至大约2120cm-1的阴影区域内的峰是报告分子的峰,其不与活细胞信号重叠。图3(B)分别示出了(从顶到底)乙醇:水(1:4,v/v)溶液中的10μM和50mM Os3(CO)10(μ-H)2;OM-NP构建体;和水溶液中的OM-NP(PEG)-L构建体的SERS光谱。Y-轴:计数,标尺长度:1000计数;X-轴:用cm-1表示的拉曼位移。阴影区域表示不与分析物信号重叠的报告分子的信号。
图4(A)和图4(B)示出了OM-NP构建体在0、7、14、21和28天的时间进程研究(time course study)的拉曼强度相对时间(天)的图(A),并示出了水中的OM-NP(PEG)-L构建体在0、7、14、21和28天的时间进程研究的拉曼强度相对时间(天)的图(B)。图4(C)和图4(D)示出了OM-NP构建体在(C)第1天和(D)第30天的透射电子显微镜(TEM)图像。(C)和(D)中的标尺长度表示50nm的长度。
图5(A)和图5(B)示出了(A)OM-NP构建体;和(B)OM-NP(PEG)-L构建体的UV光谱。在(B)(阴影区域)中的280nm波长处的紫外线吸光度表明EGFR抗体与OM-NP构建体的成功偶联。
图6示出了在水中经过28天收集的(A)OM-NP和(B)OM-NP(PEG)-L构建体的时间进程研究和光谱图。
图7示出了比较OSCC细胞在与Os3(CO)10(μ-H)2、金纳米颗粒(作为对照)、OM-NP构建体和OM-NP(PEG)-L构建体孵育24小时之后的细胞存活率的图表。该图显示,虽然Os3(CO)10(μ-H)2簇具有明显的细胞毒性,构建体却不具有明显的细胞毒性,而是像对照那样保持大约100%的存活。
图8(A)至图8(H)是用OM-NP(PEG)-L构建体处理的OSCC细胞(A至D)和SKOV细胞(E至H)的明场和SERS映射图像(mapping image)。所有映射图像(2030cm-1)均是以1μm的间隔扫描的(633nm激发)。图中的标尺长度表示5μm的长度。
图9(A)至图9(J)是与OM-NP(PEG)-L构建体孵育的OSCC细胞(EGFR-阳性)的SERS光谱和图像:(A、B、F和G)明场图像;(C和H)SERS映射图像;(D和I)暗场图像;(E)第1天和(J)第3天的SERS光谱。所有测量均是用633nm的激发和6mW的激光功率进行的。(A)、(B)、(F)和(G)中的标尺长度表示20μm的长度。(C)中的标尺长度表示7.5μm的长度。(H)中的标尺长度表示5μm的长度。(D)和(I)中的标尺长度表示10μm的长度。
图10的(A)示出了OSCC细胞在与OM-NP(PEG)-L构建体孵育之后的暗场图像,图10的(B)示出了OSCC细胞在(A)中显示的四个不同位置处的SERS光谱。Y-轴:计数,X-轴:用cm-1表示的拉曼位移。(A)中的标尺长度表示10μm的长度。
图11是示出Os3(CO)10(μ-H)2在乙醇中的IR光谱(吸光度模式)的图形。Y-轴:吸光度;X-轴:用cm-1表示的波数。
图12是示出Os3(CO)10(μ-H)2在乙醇中的比尔定律绘制图(Beer’s law plot)的图;细胞路径长度=0.1mm。Y-轴:Abs;X-轴:用mM表示的浓度。
图13是示出乙醇:水(1:4,v/v)中的Os3(CO)10(μ-H)2的50mM溶液的拉曼光谱的图。Y-轴:计数;X-轴:用cm-1表示的拉曼位移。
图14是示出悬浮于水中的OM-NP构建体(4.3×10-5μM)的SERS光谱的图。Y-轴:计数;X-轴:用cm-1表示的拉曼位移。
图15示出了化合物1a、化合物1b、化合物2a、化合物2b、化合物3和化合物4的分子结构。
图16示出了化合物1a、化合物1b、化合物2a、化合物2b、化合物3和化合物4的OM-NP偶联物的SERS光谱。Y-轴:计数;X-轴:用cm-1表示的拉曼位移。
具体实施方式
根据本发明实施方案的表面增强拉曼光谱(SERS)标记偶联物能够在1800cm-1至2200cm-1区域处提供独特的SERS信号,因此能够避免受到800cm-1至1800cm-1区域内的由生物分子发出的信号的干扰。这允许生物分子的鉴定而无需从SERS标记偶联物发出的解耦信号。有利地,标记偶联物的组合可以用来提供多重检测用的更复杂的光谱。此外,所述SERS标记偶联物与现有技术中SRES分析中使用的化合物相比表现出改进的毒理学行为,并且具有出色的储存稳定性。
因此,在第一方面中,本发明涉及表面增强拉曼光谱(SERS)标记偶联物。该SERS标记偶联物在本文中还被称作纳米标识或SERS纳米标识。如本文中使用的术语“偶联物”是指已经键接在一起的两个或更多个分子。彼此的键接可以是共价的或非共价的。
根据第一方面的SERS标记偶联物包括金属纳米颗粒和连接至该金属纳米颗粒表面的有机金属材料。如本文中使用的术语“有机金属材料”是指在有机分子、离子或原子团中包含金属原子和碳原子之间的至少一个键的化合物。有机金属材料中的金属原子不限于与碳原子联结,此外或可选地,还可以与有机金属材料中所包含的其它原子或另一金属原子联结。
有机金属材料包含金属和有机配体。在各种实施方案中,有机金属材料包括具有金属-碳单键或金属-碳多键的金属,以及具有不饱和分子的金属络合物,诸如金属-π-络合物;或诸如夹心化合物的化合物,包括全夹心、半夹心、诸如三层夹心的多层夹心和反向(inverse)夹心。
通常,可以使用能够连接至金属纳米颗粒和/或与金属纳米颗粒相互作用的任意有机金属材料。根据使用的有机金属材料,可以获得在1800cm-1至2200cm-1内的不同SERS信号。
有机金属材料可以包括一个以上的金属原子,例如包括2、3、4或5个金属原子。各金属原子均可以形成自相同的或不同的金属元素。有机金属材料的金属可以是碱金属、碱土金属、内过渡金属(镧系或锕类)、过渡金属或后过渡 金属。在各种实施方案中,有机金属材料的金属包括选自由镁、铝、钛、钒、铬、锰、铁、钴、镍、锆、钌、铪、钽、钨、铼、锇构成的组的金属,或包括本文中列出的金属中的至少一个的组合。
在各种实施方案中,有机金属材料中的金属为过渡金属。过渡金属的实例包括诸如钛(Ti)、钒(V)、铌(Nb)、钽(Ta)、铬(Cr)、钼(Mo)、钨(W)、锰(Mn)、铁(Fe)、钌(Ru)、锇(Os)、铱(Ir)、镍(Ni)和铜(Cu)的元素周期表的第3至12族中的金属。
在各种实施方案中,有机金属材料包括金属羰基化合物。有机金属材料可以由或基本上由金属羰基化合物构成。如本文中使用的术语“金属羰基化合物”是指过渡金属与一氧化碳的配位络合物。金属羰基化合物可以具有通式Mx(CO)y,其中M表示金属,CO表示羰基配体,x和y为整数,x可以具有范围从大约1至10的值,例如可以为1、2、3、4、5、6、7、8、9或10。在一些实施方案中,x为1至4,例如为1、2、3或4。y的值由金属原子的总化合价确定,并且可以具有范围从2至40的值,例如范围从2至30、2至24、2至12或4至10的值。通常,y具有比x大的值。金属羰基的实例包括,但不限于形成自锇、钼、钽或钌的羰基。金属羰基的具体实例可以为Mo(CO)6、W(CO)6、Mn2(CO)6、Cr(CO)6、Co(CO)6或其衍生物。
金属羰基可以包括一种以上的金属。例如,上述通式Mx(CO)y中的M由M1M2代表,其中M1和M2表示不同的金属。在该实施方案中,金属羰基化合物可以具有通式(M1M2)x(CO)y,其中M1和M2表示不同的金属,CO、x和y具有与上述相同的定义。
金属羰基化合物可以为均配物,即仅包含CO配体,但是还可以包含除了羰基配体之外的不同配体的混合。在该实施方案中,金属羰基化合物可以具有通式LmM(CO)n,其中L表示配体;m和n为整数;M和CO具有与上述相同的定义。m可以具有范围从1至4的值,例如可以为1、2、3或4。n的值由金属原子的总化合价确定,并且可以具有范围从1至5的值,例如可以为1、2、3、4或5。
配体的实例包括,但不限于,环戊二烯基(Cp)、环丁二烯、环辛二烯、环辛四烯、磷酸盐配体、乙烯、诸如氯化物和碘化物的卤化物、磷化氢、亚磷酸盐、胺、胂、二苯乙烯、醚、硫化物、亚烷基、亚硝酸盐、异氰化物、硫代羰 基、线性单烯烃、支链单烯烃、环单烯烃、线性二烯、支链二烯、环二烯、线性三烯、支链三烯、环三烯、双环烯烃、双环二烯、双环三烯、三环烯烃、三环二烯、三环三烯、炔烃等。
有机金属材料的配体可以是未取代的或取代的。如本文中使用的“取代的”是指用独立地选自如下基团的至少一个(例如,1个、2个、3个、4个、5个、6个或更多个)取代基取代的化合物或基团:卤化物(例如,F-、Cl-、Br-、I-)、羟基、烷氧基、硝基、氰基、氨基、叠氮基、脒基、肼基、亚肼基、羰基、氨基甲酰基、巯基、C1至C6的烷氧羰基、酯基、羧基、或其盐、磺酸或其盐、磷酸或其盐、C1至C20的烷基、C2至C16的炔基、C6至C20的芳基、C7至C13的芳烷基、C1至C4的烷氧基、C1至C20的杂烷基、C3至C20的杂芳基(即,包括至少一个芳香环的基团,其中至少一个环成员不是碳)、C3至C20的杂芳烷基、C3至C20的环烷基、C3至C15的环烯基、C6至C15的环炔基、C5至C15的杂环烷基或包括至少一个代替氢的本文列出的配基的组合,假如不超过取代原子的正常化合价的话。
在可选的实施方案中,配体可以是无机的,例如处于中性形式或离子形式的CO2和CN。
在具体实施方案中,配体包括取代的或未取代的环戊二烯基配体,例如C5H5或C5Me5,其中Me表示甲基基团。然而,还可以使用具有一个或多个不同配体的任何进一步的Cp配体。例如,C5H5的氢原子中的一个或多个可以由乙基、Cp或苯基取代。在一些实施方案中,使用了配体的混合物。例如,除了环戊二烯基配体之外,金属羰基化合物还包括诸如氯化物或碘化物的卤化物和三环己基膦。
可以通过各种方法来制备金属羰基化合物。例如,诸如镍、铁、钴、钼和钽的金属可以与一氧化碳进行反应,以形成对应的金属羰基。用于形成金属羰基的其它方法包括在诸如铜、铝、氢、氢化铝锂和一氧化碳的适合的还原剂的存在下从盐和氧化物的羰基的合成。作为实例,六羰基铬(Cr(CO)6)可以使用氯化铝作为催化剂、铝作为还原剂在苯中由无水三氯化铬(III)(CrCl6)制备。
较低分子量金属羰基的缩合可以用于诸如多核金属羰基和杂核金属羰基的较高分子量种类(molecular weight species)的制备。例如,可以使用包含由配位非饱和种类引发的反应或不同氧化状态的配位非饱和种类之间的反应的缩合 过程来合成多核金属羰基和杂核金属羰基。
有机金属材料可以具有两个、三个或更多个金属原子,并且可以呈现有机金属簇合物或金属羰基簇合物的形式。因此,用于形成SERS标记偶联物的金属羰基化合物可以包括或基本上由金属羰基簇合物构成。如本文中使用的,术语“金属羰基簇合物”是指包括与金属原子络合组合的一氧化碳的金属簇化合物,其中金属羰基簇合物中的金属原子全部或至少基本上由金属原子间的键而键连在一起。
羰基配体和/或诸如上述的那些(例如,环戊二烯基)的其它配体可以与一些或所有金属原子键合以形成络合物。在一些实施方案中,羰基配体与两个金属原子键合以在两个金属原子之间形成桥。其它适合的桥联基团可以包括,例如,膦、胂和巯基基团。金属羰基簇合物的实例包括,但不限于,九羰基铁(Fe2(CO)9)、双(二羰基环戊二烯铁)[Cp2Fe(CO)2]2、十二羰基四钴(Co4(CO)12)、羰基钌(Ru3(CO)12)、十六羰基六铑(Rh6(CO)16)、羰基锇(Os3(CO)12)、羰基铱(Ir4(CO)12)和羰基铼(Re2(CO)10)。
在各种实施方案中,金属羰基簇合物包括选自元素周期表第6族或第8族的金属。第6族元素的实例包括铬、钼和钽,第8族元素包括铁、钌和锇。例如,金属羰基簇合物包括或基本上由羰基锇、羰基钼、羰基钽、羰基钌或其混合物构成。
在具体实施方案中,有机金属材料包括或基本上由至少一种如下化合物构成:
或
其中M=Os、Mo、W或Ru。
在一些实施方案中,有机金属材料包括或基本上由至少一种如下化合物构成:
在一个实施方案中,有机金属材料基本上由具有如下通式的羰基锇构成:
在这一方面,有机金属材料被认为用作拉曼报告子,该拉曼报告子定义为具有高的拉曼截面的化合物。因此,有机金属金属材料还可以被称作拉曼-活性标记化合物,并且可以被认为代表分析物的报告子。
连接至金属纳米颗粒表面的有机金属材料可以通过可逆的静电作用、疏水作用或共价结合而稳定地吸附至该表面,以形成SERS标记偶联物。“静电吸引”是指通过盐桥、氢键和极性作用连接,例如,如果表面带有负电荷,则化合物负载正电荷,反之亦然。“疏水作用”包括不带电基团和非极性基团之间的相互作用。通过使有机金属材料连接至金属纳米颗粒,来自有机金属材料的拉曼信号可以通过金属纳米颗粒增强。
理想地,有机金属材料具有高的拉曼截面并且能够在水性介质中强烈地吸附在金属纳米颗粒的表面,使得它产生快速、强烈且不波动的SER信号。
将有机金属材料连接至金属纳米颗粒的表面以形成SERS标记偶联物。“纳米颗粒”是指具有诸如范围从1至100纳米(例如,10、20、30、40、50、60、70、80或90nm)的直径的特征长度的颗粒。纳米颗粒可以为任意适合的拉曼增强纳米颗粒,并且可以呈现胶质金属、空心或实心纳米棒、磁性纳米颗粒、顺磁性纳米颗粒、导电纳米颗粒、绝缘纳米颗粒、合成颗粒、水凝胶或棒的形式。在这一方面,将有机金属材料用作拉曼活性分子,而纳米颗粒则为拉曼增强。进一步地,纳米颗粒可以为单一的纳米颗粒或纳米颗粒的簇合物。
术语“金属纳米颗粒”是指包括SERS活性金属的纳米颗粒。SERS活性金属的实例包括,但不限于,诸如银、钯、金、铂、铱、锇、铑、钌的贵金属;铜、铝或其合金。
SERS活性金属可以表现为层或涂覆在形成自非SERS活性材料的纳米颗粒上。在这些实施方案中,金属纳米颗粒可以具有核-壳结构,其中金属纳米颗粒的核形成自诸如塑料、陶瓷、复合物、玻璃或有机聚合物的任意材料,金属纳米颗粒的壳形成自诸如贵金属的SERS活性金属。例如,金属纳米颗粒可以包括形成自贵金属、铜、铝或其合金的表面涂层。可选地,金属纳米颗粒整体地形成自SERS金属,并且可以例如构成选自由贵金属、铜、铝及其合金构成的组的金属。
在各种实施方案中,金属纳米颗粒涂覆有或由金、银或其合金构成。例如,金属纳米颗粒可以为柠檬酸盐稳定的(citrate-stabilized)金纳米颗粒。
金属纳米颗粒在形状上可以是不规则的或规则的。在一些实施方案中,金属纳米颗粒具有规则的形状。例如,金属纳米颗粒可以具有诸如球体、立方体或四面体的规则形状。因此,纳米颗粒可以为纳米球体、纳米立方体或纳米四面体。
金属纳米颗粒的尺寸可以由其直径表征。如本文中使用的术语“直径”是指穿过图形的中心且在圆周处终止的直线的最大长度。在存在一种以上金属纳米颗粒的实施方案中,金属纳米颗粒的尺寸可以由其平均直径表征,并且可以通过将各纳米颗粒的直径的总和除以纳米颗粒的总数来计算,其中术语“平均直径”是指纳米颗粒的平均直径。尽管通常使用的术语“直径”是指穿过纳米球体的中心且连接位于纳米球体的圆周上的两个点的线段的最大长度,但是本文中所使用的还指穿过具有诸如纳米立方体或纳米四面体的其它形状的纳米颗粒的中心且连接位于该纳米颗粒的边缘上的两个点的线段的最大长度。
金属纳米颗粒的直径的选择可以取决于用于涂覆或形成纳米颗粒的金属的类型,这可以导致不同程度的SERS信号强度增强。例如,当纳米颗粒涂覆有金或由金构成时,金属纳米颗粒可以具有大约60nm的直径,这提供了SERS信号强度中的最优的增强。
有机金属材料至金属纳米颗粒的连接可以以两种方式来进行。例如,有机金属材料可以通过金属纳米颗粒和包含在该有机金属材料中的金属原子之间的 金属键合来连接至金属纳米颗粒的表面。对于该金属键合,金属纳米颗粒可以通过向包含在有机金属材料中的金属原子的d轨道贡献一对电子而充当派(π)供体,由此形成金属-金属键。该金属键可以通过来自有机金属材料的电子穿过反键轨道(π*)至金属纳米颗粒的反馈来加强。
此外或可选地,有机金属材料可以通过金属纳米颗粒和包含在该有机金属材料中的有机配体之间的相互作用而连接至金属纳米颗粒。在各种实施方案中,有机金属材料与金属纳米颗粒的表面共价键合。为了便于有机金属材料至金属颗粒表面的共价耦合,有机金属材料可以包括官能团。在各种实施方案中,有机金属材料包括选自由巯基、羧基和氨基构成的组的官能团。例如,包括在有机金属材料中的有机配体可以包括选自由巯基、羧基和氨基构成的组的官能团,用于将有机金属材料连接至金属纳米颗粒的表面。
优选的官能团为巯基(-SH)基团。术语“硫醇基(thiol)基团”和术语“巯基基团”在本文中是互换使用的,并且两者均是指-SH基团。巯基基团通过在硫原子和金属表面原子之间形成共价键而易于共价连接至金属表面。
在各种实施方案中,SERS标记偶联物具有大约30nm至大约100nm的直径。这是因为该尺寸范围之外的SERS标记偶联物可能不具有显著的SERS效果。另外,具有小于30nm直径的SERS标记偶联物通过与有机金属材料的相互作用而易于分解或离解。在各种实施方案中,SERS标记偶联物具有大约30nm至100nm的直径,例如大约30nm至大约80nm、大约30nm至大约60nm、大约30nm至大约40nm、大约40nm至大约60nm、大约50nm至大约70nm,或者大约50nm、大约60nm或大约70nm。在存在一个以上SERS标记偶联物的实施方案中,大部分的或所有的SERS标记偶联物可具有大约30nm至大约100nm的直径。
在各种实施方案中,SERS标记偶联物还包括选自由二氧化硅(Si02)、与戊二醛交联的牛血清白蛋白(BSA)、硫醇化的DNA、硫醇化的聚乙二醇(PEG)及其混合物构成的组的材料,其中所述材料连接至金属纳米颗粒的表面。
在一些实施方案中,该材料包括或基本上由硫醇化的聚乙二醇(PEG)构成。在一个实施方案中,该材料由硫醇化的聚乙二醇(PEG)构成。有利地,硫醇化的PEG可用于改进纳米颗粒的稳定性和生物相容性。硫醇化的聚乙二醇具有硫醇基官能基团,使用硫醇基官能基团其可以用来连接至诸如金纳米颗粒的金属纳米颗粒的表面。
在各种实施方案中,SERS标记偶联物还包括耦合至材料的分析物结合分子(analyte binding molecule)。如本文中使用的术语“分析物结合分子”是指能够与选择的分析物结合的任意分子,以便形成由分析物结合分子和分析物构成的络合物。
在该偶联物的一个实施方案中,分析物结合分子共价耦合至材料,其随后共价连接至纳米颗粒表面。优选地,分析物结合分子与分析物分子之间的结合是特异性的,以便形成分析物和分析物结合分子之间的特异性的络合物。
如本文中使用的“特异性地结合(specifically binding)”和“特异结合(specific binding)”是指分析物结合分子根据结合区域的识别或靶分子上的表位(epitope)而与靶分析物结合。优选地,分析物结合分子识别如下靶分子并与如下靶分子结合:该靶分子具有比该分析物结合分子与样品中的其它化合物结合更高的结合亲和力。在本发明的各种实施方案中,“特异性地结合”可以指抗体或其它生物分子与这样的靶分子结合,该靶分子具有比抗体或其它生物分子结合与靶分子无关的分子高至少大约106倍的亲和力,优选地高至少大约107倍的亲和力,更优选地高至少大约108倍的亲和力,最优选地高至少大约109倍的亲和力。典型地,特异性结合是指比非特异结合高大约106至大约109倍的范围的亲和力。在一些实施方案中,特异性结合可以由比非特异结合高109倍的亲和力表征。结合亲和力可以通过任意适合的方法测定。该方法在本领域内是已知的,其包括,但不限于,表面等离子体共振和等温滴定量热法。在具体实施方案中,分析物结合分子唯一地识别并结合靶分析物。
分析物结合分子的实例包括,但不限于,抗体、抗体片段或抗体样分子(antibody like molecule)。在各种实施方案中,分析物结合分子为诸如抗体(例如单克隆抗体或多克隆抗体)的蛋白分子,其在特异性的决定簇或表位处与靶分析物免疫地结合。术语“抗体”以最广泛的意义使用,并且具体覆盖单克隆抗体以及抗体变体(antibody variant)、抗体片段或抗体样分子,例如Fab、F(ab’)2、scFv、Fv双体和线性抗体,只要它们显示出期望的结合活性即可。
在一些实施方案中,分析物结合分子为单克隆抗体。如本文中使用的术语“单克隆抗体”是指从基本上均一的抗体群中获得的抗体,即,除了以极少量存在的可能的天然产生的突变之外,构成该群的各个抗体是完全相同的。单克隆抗体是高度特异性的,针对单一的抗原位点。另外,不同于通常包括针对不 同决定簇(表位)的不同抗体的传统(多克隆)抗体制剂,每个单克隆抗体针对抗原上的单一的决定簇。除了它们的特异性之外,单克隆抗体的优势在于它们可以通过杂交瘤培养来合成,不受其它免疫球蛋白污染。修饰语“单克隆的”表示从基本上均一的抗体群中获得的抗体的特征,并且不被理解为需要通过任意特定的方式生产的抗体。单克隆抗体可以包括“嵌合”抗体和人源化抗体。“嵌合”抗体为不同部分源自不同动物种类的分子,例如具有源自鼠源mAb(murine mAb)可变区和人类免疫球蛋白恒定区的分子。
通过在培养物中由传代细胞系生产抗体分子的任意技术可以获得单克隆抗体。这些技术包括,但不限于Koehler和Milstein的杂交瘤技术(美国专利No.4,376,110)、人类B-细胞杂交瘤技术和EBV-杂交瘤技术。该抗体可以为包括IgG、IgM、IgE、IgA和IgD及其亚类在内的任意免疫球蛋白种类。生产mAb的杂交瘤可以是体内培养或体外培养的。在体内产生高滴度mAb使该生产成为非常有效的生产方法。
在本发明的一些实施方案中,分析物结合分子为多克隆抗体。“多克隆抗体”是指来自抗原或其抗原性功能衍生物免疫的动物血清的、非均一的抗体分子群。为了多克隆抗体的生产,可以通过注射任选地补充有佐剂的抗原或半抗原-载体偶联物(hapten-carrier conjugate)使诸如兔子、小鼠和山羊等的宿主动物免疫。
在各种实施方案中,通过混入多种分析物结合分子来实现有机金属涂覆的纳米颗粒的靶向性。分析物结合分子的实例包括,但不限于抗EGFR和抗HER。
如本文中可互换使用的术语“分析物”、“靶化合物”、“靶分子”或“靶(target)”是指能够通过结合至结合分子而在试验中进行检测的任意物质,并且在一个实施方案中,该物质可能存在于样品中。因此,分析物可以为存在其天然抗体或能够制得其抗体的任意物质,但不限于此。例如,分析物可以为抗原、蛋白、多肽、核酸、半抗原、糖类、脂类、细胞或任意其它的各种各样的生物分子或非生物分子、其复合物或组合。通常,分析物将为源自诸如细菌样品、真菌样品、病毒样品、植物样品或动物样品的生物源的蛋白、肽、糖类或脂类。然而,此外,靶还可以为诸如药物、药物代谢物、染料或存在于样品中的其它小分子的小分子有机化合物。
如本文中使用的,术语“样品”是指材料的等分试样(an aliquot of material),通常是源自生物材料的生物基质、水性溶液或水性悬浮液。例如,对分析物的 存在进行检测的样品包括例如细胞、组织、匀浆液(homogenate)、裂解物(lysate)、提取物(extract)、纯化的或部分纯化的蛋白和其它生物分子;以及上述物质的混合物。
样品的非限制性实例包括:人类和动物体液,例如全血、血清、血浆、脑脊液、痰、支气管冲洗物(bronchial washing)、支气管吸出物(bronchial aspirate)、尿液、精液、淋巴液以及呼吸道、肠道、生殖泌尿道的各种外分泌物、泪、唾液、乳液、白细胞、骨髓瘤等;生物流体,例如细胞培养上清液;可能是固定的或可能不是固定的组织样本;以及可能是固定的或可能不是固定的细胞样本。使用的样品可以根据待检测的检测形式和待检测的组织、细胞、提取物或其它材料(特别是生物材料)的性质而变化。用于从细胞或样品制备蛋白提取物的方法在本领域内是已知的,并且可以轻易地修改以获得能够与本文中公开的SERS标记偶联物一起使用的样品。对体液的检测还可以在体内进行,即在不用首先收集样品的情况下进行。
“肽”通常是指由肽键连接的氨基酸短链。典型地,肽包括大约2-100个氨基酸的氨基酸链,更典型地包括大约4-50个氨基酸,并且最常见地包括大约6-20个氨基酸。“多肽”通常是指典型地比肽长的单个直链或支链氨基酸序列。“多肽”通常在长度上包括至少约20至1000个氨基酸,更典型地包括至少大约100至600个氨基酸,并且通常包括大约200至大约500个氨基酸。一种具体氨基酸的均聚物,例如聚赖氨酸,也包括在内。“蛋白”包括单条多肽以及相同或不同的多条多肽链的复合物。
蛋白中的多条链可以通过二级结构、三级结构和四级结构以及一级氨基酸序列结构进行表征,可以通过例如二硫键而键连在一起,并且可以不受限制地包括诸如糖基化、磷酸化、截短(truncation)或其它处理的合成后修饰(post-synthetic modification)。
例如,诸如IgG蛋白的抗体典型地包括通过二硫键而键连在一起的四条多肽链(即,两条重链和两条轻链)。此外,蛋白可以包括诸如结合的金属(即,铁、铜和硫)的另外的组分,或其它部分(moiety)。肽、多肽和蛋白的定义不受限制地包括:生物学上的活性形式和非活性形式;变性形式和天然形式;以及其变体形式、修饰形式、截短形式、杂交形式和嵌合形式。
如本文中可互换使用的术语“接触(contacting)”或“孵育(incubating)” 通常是指使一种组分、试剂、分析物或样品进入另一种。例如,接触可以包含使包括分析物结合蛋白或其偶联物的溶液与样品混合。包括一种组分、试剂、分析物或样品的溶液还可以包括诸如二甲基亚砜(DMSO)或去污剂的另一种组分或试剂,其利于混合、相互作用、摄取或者对组分、试剂、分析物和/或样品之间的接触有利的其它物理或化学现象。
如本文中使用的术语“检测”是指验证给定分子存在的方法。实现该方法所使用的技术为表面增强拉曼光谱(SERS)。检测还可以是定量的,即包括使检测的信号与分析物的量相关联。检测包括体外检测和体内检测。
还可以在用于检测一种以上分析物(即,两种或更多种不同的分析物)的多重检测方法中使用本发明的SERS标记偶联物。这通常要求在接触步骤使用一种以上分析物结合分子,以便各分析物均被特异性的分析物结合分子结合。可以通过使用产生不同的SERS信号的不同的拉曼活性分子或有机金属材料来对由多种不同的“分析物结合分子:分析物”复合物获得的信号进行解析。
例如,用大约500nm至1000nm范围内的适合的激发波长,根据第一方面的SERS标记偶联物可以具有可测量的SERS光谱。连接至金属纳米颗粒的有机金属材料用作报告子,并且可以提供2000cm-1区域的可检测的且独特的SERS信号。如上所述,通过提供该区域的SERS信号,这避免了由落入相同区域的生物分子或分析物所发出的信号的干扰,以允许生物分子的鉴定而无需从SERS标记偶联物中所发出的解耦信号。
这些SERS标记偶联物可以作为给定分析物的检测试剂盒(kit)的一部分,或者偶联物组分与偶联剂一起形成试剂盒的一部分,要求在使用之前,形成偶联物。
在进一步方面中,本发明涉及使用表面增强拉曼光谱对分析物进行检测的生物传感器,该生物传感器包括一种或多种以上偶联物。该生物传感器还包括基底,该基底具有连接至或粘附至该基底的纳米颗粒。该生物传感器可以被配置成用于体内使用和/或体外使用。所述生物传感器的使用可以在体内或在体外。
可以将本文中描述的SERS标记偶联物或生物传感器用于分析物检测的方法,其中该方法包括使SERS标记偶联物或生物传感器与包含所述分析物的介质(例如样品或体液)接触,以及检测来自该传感器的SERS信号。在一些实施方案中,该生物传感器被配置成用于允许一种以上分析物的检测的多重检测方法。
在第三方面中,本发明涉及形成根据第一方面的表面增强拉曼光谱(SERS)标记偶联物的方法。该方法包括:将包含金属纳米颗粒的悬浮液与包含有机金属材料的溶液混合以形成混合物;以及孵育该混合物以允许有机金属材料连接至金属纳米颗粒表面连接,用来形成SERS标记偶联物。
悬浮液可以包括金属纳米颗粒,该金属纳米颗粒基本上由涂覆有或由选自贵金属、铜、铝及其合金构成的组的金属构成的金属纳米颗粒组成。该金属纳米颗粒可以分散在诸如乙醇、甲醇、二氯甲烷、三氯甲烷、苯、甲苯、乙腈、四氢呋喃、二甲基亚砜、己烷、环己烷及其混合物的适合的试剂中。可以用于形成金属纳米颗粒的贵金属的实例以上已经讨论过了。
溶液可以包括基本上由金属羰基簇合物构成的有机金属材料。可以使用的适合的有机金属材料和金属羰基簇合物的实例以上已经谈及过了。有机金属材料和金属羰基簇合物可以分散在可与用于分散金属纳米颗粒的试剂相同或不同的适合的试剂中。在各种实施方案中,金属纳米颗粒和有机金属材料均分散在乙醇中。
混合物的孵育通常可以在诸如室温和压力的温和反应条件下进行。混合物的孵育可以在允许有机金属材料连接至金属纳米颗粒表面的连接任意适合的时间进行。在各种实施方案中,孵育时间为大约30分钟至大约180分钟,例如大约30分钟至大约120分钟、大约60分钟至大约90分钟、大约80分钟、大约80分钟或大约60分钟。
根据第三方面的形成表面增强拉曼光谱(SERS)标记偶联物的方法还可包括将SERS标记偶联物与包含选自由二氧化硅(SiO2)、用戊二醛交联的(BSA)、硫醇化的(thiolated)DNA、硫醇化的聚乙二醇(PEG)及其混合物构成的组的材料的溶液进行孵育,以便将材料连接至金属纳米颗粒表面。在各种实施方案中,所述溶液包括或基本上由硫醇化的聚乙二醇(PEG)构成,可以添加硫醇化的聚乙二醇(PEG)以提高纳米颗粒的稳定性和生物相容性。可以使用与使有机金属材料连接至金属纳米颗粒表面的近似的孵育时间和条件。
在进一步实施方案中,将包括分析物结合分子的溶液加至SERS标记偶联物以使分析物结合分子耦合至SERS标记偶联物。可以使用的分析物结合分子的实例以上已经谈及过了。
在前述实施方案中,可以使用过量的所述材料和/或分析物结合分子,以使 得所述材料和/或分析物结合分子结合至SERS标记偶联物。因此,为了移除过量的材料和/或分析物结合分子,第三方面的方法还包括诸如离心的分离步骤,以分离出由过量试剂形成的SERS标记偶联物。
以下,将参照示出本发明的示例性实施方案的附图来更全面地描述本发明。然而,本发明可以表现为许多不同的形式,而不应当被解释为限于本文中阐明的示例性实施方案。相反地,提供这些实施方案以使得本公开将是充分的和完整的,从而向本领域技术人员全面地表达本发明的范围。在附图中,为了清楚可以放大层和区域的长度和尺寸。
本文中使用的专业术语仅为了描述特定的实施方案,并且不意在限制本发明。如本文中使用的,除非上下文中另有明确说明,单数形式“a(一)”、““an(一个)”和“the(该)”意在还包括复数形式。还应当理解,当本说明书中使用术语“comprise(包括)”和/或“comprising(包含)”时,指定所陈述特征、整数、步骤、操作、元素和/或组分的存在,但不排除一种或多种其它特征、整数、步骤、操作、元素、组分和/或其组的存在或添加。如本文中使用的,术语“和/或”包括一种或多种相关的所列项目的任意和所有组合。
除非另有定义,本文中使用的所有术语(包括技术术语和科学术语)均具有与本发明所属领域的普通技术人员的常规理解相同的含义。还应当理解,诸如那些常规使用的字典中所定义的术语,应当被理解为具有与它们在相关领域中的含义一致的含义,并且将不以理想化地或超出正式意义地被理解,除非本文中明确地如此定义了。
本文中解释性地描述的本发明可适当地在本文未具体公开的任意一种或多种元素、一种限制或多种限制不存在的情况下进行实践。因而,例如,术语“包含(comprising)”、“包括(including)”、“含有(containing)”等应当扩大性地解读并且不受限制。此外,在本文中采用的术语和表述都作说明性的目的且不具有限制意义,且所采用的术语和表述不具有排斥所示和所属特征或其部分的任何等同物目的,但应当注意,在要求保护的本发明的范围内可以进行不同修改。因此,应当理解,虽然已经通过优选实施方案和任选特征具体的公开了本发明,但是对于本领域技术人员来说可以使用包含本文中所公开的本发明的修改和变型,且这些修改和变型应当理解为落入本发明的范围。
本文中已经广泛且一般地描述了本发明。落入一般公开内的每个较窄种类 和子种类组也形成本发明的一部分。这包括具有移除了任意种类主题限制性条款或负限制的本发明的一般描述,而不必考虑是否本文中具体列举出所切离的材料。
其它实施方案在以下权利要求的范围内且是非限定性实例。此外,本发明的特征或方面按照马库什群组描述,本领域技术人员应当意识到本发明也因此按照马库什群组的任意单独成员或成员的子群组来描述。
实验部分
已经在作为示例性实施方案的试验中使用有机金属锇羰基簇合物,该有机金属锇羰基簇合物具有对氧稳定且对水稳定的优点,并且在有机金属化合物范围内是非常稳健的。
如所显示的,锇羰基簇合物或OM-NP构建体的拉曼光谱以10μM浓度在乙醇:水(1:4;v/v)溶液中显示不可检测的CO信号;其仅可以在更高的浓度(50μM)下进行检测。与此相反,OM-NP构建体中的CO信号得到显著增强,其中CO强度已经增加超过四个数量级(大约15000倍)。
实施例1:总体步骤
化学合成的所有操作均在氩或氮气氛下使用标准Schlenk技术来进行。根据H.D Kaesz,Inorg.Synth.1990,28,238-240中报道的步骤制备三锇羰基簇合物Os3(CO)10(μ-H)2。Os3(CO)12购自Oxkem;所有其它化学品均购自其它商业来源并按提供的来进行使用。
使用Beckman Coulter DU 730分光计记录UV可见光谱。在300kV加速电压下,将透射电子显微镜(TEM)图像记录在JEOL JEM 3010TEM上。通过将一滴纳米颗粒放置在碳涂覆的Cu格栅上来制备TEM样品。
通过测量数字化图像中的一些随机选择的区域(每个包含近似100至200个纳米颗粒)中的纳米颗粒的尺寸,而获得平均颗粒尺寸。
使用变换红外分光计(transform infrared spectrometer)来获得IR光谱。使用具有Peltier冷却CCD检测器的Renishaw InVia拉曼(UK)显微镜和633nm激发波长进行光谱测量,其中激光束通过50倍物镜指向样品,其用于激发样品,还用于收集返回的拉曼信号。其它制造商的拉曼分光计也适于与本发明的SERS标记偶联物一起使用。用WiRE3.0软件处理所有的拉曼光谱。样品处的最大激 光功率被测定为6.2mW并且在测量期间将曝光时间设定在10s。在各个测量之前,用拉曼峰集中在520cm-1处的硅标准校正仪器。
实施例2:OM-NP构建体和OM-NP(PEG)-L构建体的制备
将新鲜制备的各种浓度(10μM、20μM、60μM、80μM和100μM)的Os3(CO)10(μ-H)2乙醇溶液与乙醇中的60nm金胶质(2.6×1010个颗粒/mL,BBInternational UK)混合以形成OM-NP构建体。发现Os3(CO)10(μ-H)2的最佳摩尔浓度为100μM。
在孵育60min之后,通过离心法(10,000rpm,2min)移除过量的Os3(CO)10(μ-H)2,使OM-NP构建体重悬于1mL去离子(DI)水中以用于随后的生物偶联。将OM-NP构建体与10μM的硫醇化的聚乙二醇(PEG)(HS-PEG-COOK,M.W.PEG 5000Da,RAPP Polymere GmbH)孵育60min以形成聚乙二醇化的(peglyated)OM-NP构建体。通过离心法(10,000rpm,2min)移除过量的HS-PEG-COOH,使聚乙二醇化的OM-NP构建体重悬于1mL DI水中,其中PEG的羰基末端准备好与抗体偶联。分别用各25μM的乙基二甲基氨基丙基(Sigma-Aldrich)和N-羟基丁二酰亚胺(Sigma-Aldrich)孵育聚乙二醇化的OM-NP构建体,然后加入100μL(100ng/mL)的抗-EGFR IgG2a(Santa Cruz)以形成OM-NP(PEG)-L构建体。
孵育过夜之后,通过离心法(10,000rpm,2min)去除过量的抗-EGFR、乙基二甲基氨基丙基(EDC)和N-羟基丁二酰亚胺。加入硫醇化的PEG(HS-PEG,M.W.PEG 5000Da,RAPP Polymere GmbH)以实现与PEG的最大封装(encapsulation)。孵育30min之后,通过离心法(10,000rpm,2min)去除过量的HS-PEG,使OM-NP(PEG)-L构建体悬浮在DI水中,用于储存。
实施例3:OM-NP和OM-NP(PEG)-L构建体的SERS信号稳定性
在一个月的时间内测量OM-NP构建体的SERS信号。基于用633nm激光(60mW功率)激发得到SERS光谱,最高拉曼峰(2030cm-1)的SERS强度表示为取自相同样品在不同时间的三个独立测量的平均±标准偏差。
图3的(A)示出了水溶液中存在来自Os-Au纳米颗粒的可检测的拉曼散射信号。这些OM-NP构建体还显示非常好的储存稳定性。图4示出了水中存在长达28天的始终如一的拉曼散射信号。由于将金纳米颗粒表面的金属羰基的任意分解视为CO信号强度的变化,如可从图4A和图4B中看出的,水溶液中的CO 信号保持始终如一长达28天。Os-Au纳米颗粒或OM-NP构建体对生物偶联处理显示好的稳定性,并伴随最小的拉曼散射信号衰减,ca.10%。如图4的C和图4的D中的透射电子显微镜(TEM)图像示出的,该构建体很好地分散在水溶液中,并且即使在30天后仍无聚集(aggregation)。该构建体为具有60nm平均尺寸的球形体。
图6是示出在水中28天内收集的(A)OM-NP构建体和(B)OM-NP(PEG)-L构建体的时间进程研究和光谱的图。
实施例4:OM-NP构建体的细胞活性研究
对于活细胞成像,将OM-NP构建体与针对表皮生长因子受体的抗体(抗-EGFR)偶联,由于表皮生长因子受体在多种癌症中高表达并因此已经应用在许多生物研究中。如图5所示,通过观察在280nm处的吸光度最大值来确定成功的偶联。在生物偶联处理中也加入PEG,以提高构建体的稳定性和生物相容性。如图4的(B)所示,这些OM-NP(PEG)-L构建体还显示好的储存稳定性,伴随着CO信号在28天中的最小衰减(<10%)。
在将EGFR-PEG Os-Au纳米颗粒(OM-NP(PEG)-L构建体)(43pM)引入各个孔之前,将五千个OSCC细胞接种在96孔板中培养24小时。允许所述OSCC细胞再孵育24小时,其后将10μl的CCK8(细胞计数增殖试剂盒,Sigma-Aldrich)加入各个孔。在450nm激发4小时之后,利用SpectraMax 384光谱分析仪测定细胞吸光度(cell absorbance)。
利用OSCC细胞系(鳞状细胞癌)(其中EGFR通常过表达)评价这些OM-NP(PEG)-L构建体的细胞毒性。有趣的是,如能够在图7中看到的,尽管簇合物Os3(CO)10(μ-H)2具有明显细胞毒性,所述构建体却不具有明显细胞毒性,而是像对照那样保持大约100%的活细胞。这显示了,Os-Au纳米颗粒或OM-NP构建体在生物研究中的使用是安全的。
实施例5:在OSCC和SKOV3细胞中的SERS映射(mapping)实验
在具有通过50倍物镜指向样品的激光束和PeItier冷却CCD检测器的Renishaw InVia Raman显微镜系统中进行SERS映射实验。OSCC(鳞状细胞癌)和SKOV3(卵巢癌)细胞以106细胞/mL的密度接种于8孔载玻片中的包含10% 胎牛血清和青链霉素(penicillin streptomycin)(Gibco)的Dulbecco Modified Eagle’s Medium(DMEM,Gibco)中。所有培养均维持在37℃、5%二氧化碳(CO2)下。
在25℃与EGFR-PEG Os-Au纳米颗粒(43pM)孵育4h,并用PBS(×3)和培养基(×2,每次冲洗孵育15分钟)漂洗之后,用具有1μm激光焦斑和6mW功率的633nm的激发波长激发样品,并且当光栅以1μm阶梯扫描特定区域(近似30×30μm2)时进行2030cm-1处的映射测量,每个阶梯的积分时间为1s。
随后,用Vectasheild荧光封固剂封固细胞,用于暗场显微镜实验。使用连接至Nikon Eclipse 80i显微镜的增强暗场(EDF)照明系统(Cyto Viva)观察细胞。所述系统由Cyto Viva 150-暗场聚光镜构成,其代替显微镜的原始聚光镜并经由光纤光导连接至Solarc 24W金属卤素光源。在具有晕彩(iris)的100倍油物镜下摄取图像。
采用两种不同的癌细胞系,即,OSCC(鳞状细胞癌,EGFR-阳性)细胞和SKOV3(卵巢癌,EGFR-阴性)细胞,以确认OM-NP(PEG)-L构建体的特异性。
使用2030cm-1处的SERS增强CO吸收峰对已用OM-NP(PEG)-L构建体处理过的OSCC细胞进行成像,并且所述图像与图8(A)至(D)中的明场和暗场成像结果密切相关。
图8(E)至图8(H)还示出了用EGFR-阴性细胞系获得的一组相似的图像,其清楚地显示不存在所述构建体。这个研究清晰地显示了OM-NP构建体用于活细胞成像的优点,对于活细胞成像,OM-NP构建体信号与细胞分子信号是分离的。
暗场显微镜用于细胞中的OM-NP(PEG)-L构建体的可视化。这两种被处理的细胞系中的每一个的放大的暗场图像均清楚地显示,与SKOV3细胞相比,OSCC细胞具有更强的光散射(图8的(B)和图8的(F))。这清楚地显示了OM-NP(PEG)-L构建体对EGFR阳性细胞的特异性和有效靶向。
然后,将OSCC细胞储存3天,以测试OM-NP(PEG)-L构建体在细胞体系 中的稳定性。结果如图9所示。与原始信号相比,OM-NP(PEG)-L构建体的CO信号在峰位移(peak shifting)方面未观察到改变。此外,细胞在已经储存3天之后仍然具有强的图像。这表明,OM-NP(PEG)-L构建体在细胞环境中是稳定的。
图10示出了从OSCC细胞观察到锇羰基簇合物的拉曼散射信号。该散射亮点与能够发现CO振动信号的位置密切相关。
实施例6:CO峰增强的估算
本文中已经使用SERS以增强金属羰基化合物的CO伸缩振动信号。通过比较簇合物Os3(CO)10(μ-H)2和OM-NP构建体的2030cm-1峰的强度来评价CO振动峰强的增强:
增强=(C簇合物×I构建体)/(C构建体×I簇合物)
其中C簇合物和C构建体分别为簇合物Os3(CO)10(μ-H)2和OM-NP构建体的浓度,I簇合物和I构建体分别为簇合物Os3(CO)10(μ-H)2和OM-NP构建体的相应标准拉曼强度和SERS强度。
Os3(CO)10(μ-H)2在乙醇中的2025cm-1峰的消光系数(ε)被测定为8850M-1cm-1;图11中给出了IR光谱(吸光度模式),图12中给出了比尔定律绘制图。
按以下估算OM-NP构建体中的簇合物浓度:
将10ml 4.3×10-5μM金纳米颗粒悬浮液样品(从BBInternational UK产品数据表中获得金纳米颗粒浓度)通过离心法沉淀。将其分散在1.0ml 1000μM的Os3(CO)10(μ-H)2乙醇溶液中,孵育30min,然后再次离心。将上清液的一份等分试样稀释6倍,并且通过测量2025cm-1处的IR吸光度来测定未反应的簇合物的浓度。然后,基于这些簇合物浓度的差异,将OM-NP构建体中的簇合物的浓度估算为340μM。
为了拉曼测量,首先如上制备所述构建体,但稀释10倍,使得OM-NP构建体中的簇合物的浓度为大约34μM。然后,将这些构建体通过离心法沉淀,然后重悬于相同体积的水中。分别在442计数和4577计数下测量乙醇:水(1:4,v/v)中的Os3(CO)10(μ-H)2的50mM溶液(图13)和OM-NP构建体(图14)的 拉曼光谱中的2030cm-1峰的强度。由此,估算CO信号的增强为:(50mM×4577)/(34μM×442)=15228。
实施例7:作为SERS纳米标识的有机金属(钼、锇、钌、钽)羰基涂覆的纳米颗粒的制备
已经合成如图15所示的半夹心复合物并且与金纳米颗粒共轭,以产生2200-1800cm-1区域中的SERS信号。将各种浓度(20μM)的新鲜制备的有机金属羰基乙醇溶液与乙醇中的金胶质(2.6×1010颗粒/mL,BBInternational UK)混合。孵育60min之后,通过离心(10000rpm,2min)移除过量的有机金属羰基,使有机金属羰基-Au沉淀物(pellet)重悬于1mL DI水中,以测量SERS。
如上所述,现有技术的SERS报告分子在SERS下发出位于800cm-1至1800cm-1区域内的信号,不幸的是,在该区域内也有许多生物分子的信号发出,由此导致SERS报告子和分析物之间的峰重叠。
通过使用本文中公开的包括金属纳米颗粒和连接至该金属纳米颗粒表面的有机金属材料的SERS标记偶联物,可以解决以上问题。SERS标记偶联物的实施方案包括基于有机金属的金属羰基的生物标识(organometallic metal carbonyl-based biotag),其通过将锇羰基簇合物连接至金纳米颗粒而形成,OM-NP构建体作为一个实例。观察水溶液中的OM-NP构建体的位于2000cm-1区域内的强SERS羰基信号。通过使用CO伸缩振动信号与细胞的其它分子振动模式截然分开的过渡金属羰基化合物,使来自活细胞成像的信号易于被识别。此外,与其它检测模式相比,本文中公开的SERS标记偶联物在信号强度和信号噪音比方面提供了改进的敏感度,并且还提供了好的空间分辨率。
此外,这些OM-NP构建体显示极佳的水分散性和储存稳定性。如在以上详述的活细胞成像实验中所证实的,OM-NP构建体可以易于用适合的结合配体功能化以产生生物功能的OM-NP(PEG)-L构建体。例如,SERS纳米标识可以随后用诸如聚乙二醇(M.W.5000Da,PEG)的聚合物包被,以提高它们的储存稳定性,并且提高它们在可能的体内应用的滞留时间。可以通过引入诸如抗体和DNA的靶分子来优化SERS纳米标识的特异性。易于生物功能化、与生物分子的好的 生物相容性、在水溶液中的高稳定性和好分散性意味着,本文中公开的SERS标记偶联物成为生物医学应用的极佳候选,所述生物医学应用诸如多重生物检测、免疫检测、化学检测和生物学领域、司法化学鉴定领域、基因组领域和医学领域中已知的其它测试。
虽然已经参照示例性实施方案特别示出和说明了本发明,但是应当理解,在不超出如由所附权利要求定义的精神和范围的情况下,本领域普通技术人员可以作出形式上和细节上的各种改变。
表面增强拉曼光谱(SERS)标记偶联物及其制备方法专利购买费用说明
Q:办理专利转让的流程及所需资料
A:专利权人变更需要办理著录项目变更手续,有代理机构的,变更手续应当由代理机构办理。
1:专利变更应当使用专利局统一制作的“著录项目变更申报书”提出。
2:按规定缴纳著录项目变更手续费。
3:同时提交相关证明文件原件。
4:专利权转移的,变更后的专利权人委托新专利代理机构的,应当提交变更后的全体专利申请人签字或者盖章的委托书。
Q:专利著录项目变更费用如何缴交
A:(1)直接到国家知识产权局受理大厅收费窗口缴纳,(2)通过代办处缴纳,(3)通过邮局或者银行汇款,更多缴纳方式
Q:专利转让变更,多久能出结果
A:著录项目变更请求书递交后,一般1-2个月左右就会收到通知,国家知识产权局会下达《转让手续合格通知书》。
动态评分
0.0