专利转让平台_买专利_卖专利_中国高校专利技术交易-买卖发明专利上知查网

全部分类
全部分类
一种TiBw/TC4复合材料表面纳米重熔层及其制备方法

一种TiBw/TC4复合材料表面纳米重熔层及其制备方法

IPC分类号 : C22F3/00

申请号
CN201810189552.X
可选规格

    看了又看

  • 专利类型:
  • 法律状态: 有权
  • 公开号: CN108486513B
  • 公开日: 2018-09-04
  • 主分类号: C22F3/00
  • 专利权人: 上海工程技术大学

专利摘要

专利摘要

本发明公开了一种TiBw/TC4复合材料表面纳米重熔层及其制备方法,以原位自生网状结构TiBw/TC4复合材料为母材,通过电子束上散焦快速扫描方式对上述母材表面快速熔化并凝固后形成若干道重熔硬化层,且上述重熔硬化层由纳米级钛合金马氏体和纳米级TiB增强体组成,不破坏材料内部结构的基础上,仍保留材料原有塑形和韧性,有效解决材料迅速断裂和失效的问题,使材料拥有更高的比强度和表面性能,更好应用于航空航天、冶金、化工和医疗器械等领域。

权利要求

1.一种TiBw/TC4复合材料表面纳米重熔层,其特征在于,以原位自生网状结构TiBw/TC4复合材料为母材、为通过电子束上散焦快速扫描方式对所述母材表面快速熔化并凝固后形成的若干道重熔硬化层;所述重熔硬化层由纳米级钛合金马氏体和纳米级TiB增强体组成;其中,所述母材中增强体的体积分数为3~8%;所述母材的网状结构尺寸为90~110μm。

2.一种如权利要求1所述的TiBw/TC4复合材料表面纳米重熔层,其特征在于,所述纳米级TiB增强体的TiB晶须直径为50~100nm。

3.一种如权利要求1所述的TiBw/TC4复合材料表面纳米重熔层,其特征在于,所述纳米级钛合金马氏体的直径为80~120nm。

4.一种如权利要求1所述的TiBw/TC4复合材料表面纳米重熔层,其特征在于,所述重熔硬化层的厚度为100~300μm。

5.一种如权利要求1~4任一项所述TiBw/TC4复合材料表面纳米重熔层的制备方法,其特征在于,包括以下步骤:

S1、试样制备与预处理:先将所述母材切割成尺寸为10mm×5mm×5mm的试样,并打磨去除上述试样表面氧化膜,再用酒精对其表面进行清理;

S2、试样工装与真空准备:利用夹具将步骤S1中试样固定在真空室内工作台上,移动调整工作台确保整个试样表面都在电子束工作区域,关闭真空室后抽真空,使真空度达到5×10-2Pa;

S3、散焦调试与重熔改性:调整上述真空室内工作台的高度为500~700mm,束流为1mA,使电子束聚焦在所述试样表面,并记录此时聚焦电流;再将电子束下束点移至试样的一端,调整电子束加速电压为150kV,束流为3~6mA,扫描速度为200~360mm/min,增加聚焦电流以保证电子束光斑尺寸为3~5mm,且焦点位于所述试样表面上方2mm处,进行电子束重熔改性,得一道重熔硬化层;

S4、纳米重熔层制备:调整上述真空室内工作台沿垂直于电子束扫描方向行走,且行走距离为步骤S3中所述一道重熔硬化层宽度的75~85%,得搭接率为15~25%的搭接区;再按相同的工艺参数重复步骤S3中所述电子束重熔改性,得第二道重熔硬化层;然后依次重复上述调整工作台和电子束重熔改性工序,实现整个试样表面重熔改性,得TiBw/TC4复合材料表面纳米重熔层。

6.一种如权利要求5所述TiBw/TC4复合材料表面纳米重熔层的制备方法,其特征在于,步骤S3中,所述电子束的扫描轨迹为直线。

7.一种如权利要求5所述TiBw/TC4复合材料表面纳米重熔层的制备方法,其特征在于,步骤S3中,所述电子束重熔改性方式为电子束上散焦快速扫描。

8.一种如权利要求5所述TiBw/TC4复合材料表面纳米重熔层的制备方法,其特征在于,步骤S3中,电子束重熔改性的工艺参数为:电子束加速电压为150kV,束流为4mA,扫描速度为260mm/min,真空度为5×10-2Pa,工作高度为500mm,搭接率为18%。

说明书

技术领域

本发明属于材料表面改性技术领域,具体涉及一种TiBw/TC4复合材料表面纳米重熔层及其制备方法。

背景技术

钛合金材料具有比强度高、耐蚀性强、质轻和中温性能好等一系列优点,被广泛应用于航空航天、冶金、化工、医疗器械等工业领域。但随着航空航天科技的迅猛发展,结构轻量化设计对使用材料本身提出更高要求的同时,又要求其具有更高的比强度和表面性能。钛基复合材料的室温与高温强度明显高于钛合金,且拥有各向异性和优异的成型加工性能,完全满足航空航天领域对结构材料轻量化、耐热和可成型加工的设计要求。然而,通过引入增强体虽然可以在一定程度上提高钛合金的性能如表面强度与耐磨性等,但为了保证复合材料整体塑性和韧性,其增强体含量添加不宜过多,限制了钛合金表面强度、硬度的进一步提升。

发明内容

为克服上述现有技术的缺陷,本发明的目的在于提供一种新型且可调控的TiBw/TC4复合材料表面纳米重熔层及其制备方法。以真空电子束作为热源,对其表面进行重熔改性,重熔层完全在真空中生成,其表面洁净度高,且重熔层与基体为冶金结合,制备出的高强耐磨纳米级钛基复合材料硬化层大大改善钛合金表面强度和硬度等性能,扩大钛合金及其复合材料的应用范围。

本发明的上述目的通过以下技术方案实现:

一种TiBw/TC4复合材料表面纳米重熔层,以原位自生网状结构TiBw/TC4复合材料为母材、为通过电子束上散焦快速扫描方式对所述母材表面快速熔化并凝固后形成的若干道重熔硬化层,且所述重熔硬化层由纳米级钛合金马氏体和纳米级TiB增强体组成;其中,所述母材中增强体的体积分数为3~8%;所述母材的网状结构尺寸为90~110μm。

进一步地,所述纳米级TiB增强体的TiB晶须直径为50~100nm。

进一步地,所述纳米级钛合金马氏体的直径为80~120nm。

进一步地,所述重熔硬化层的厚度为100~300μm。

本发明的第二方面,上述TiBw/TC4复合材料表面纳米重熔层的制备方法,具体地,包括以下步骤:

S1、试样制备与预处理:先将所述母材切割成尺寸为10mm×5mm×5mm的试样,并打磨去除上述试样表面氧化膜,再用酒精对其表面进行清理;

S2、试样工装与真空准备:利用夹具将步骤S1中试样固定在真空室内工作台上,移动调整工作台确保整个试样表面都在电子束工作区域,关闭真空室后抽真空,使真空度达到5×10-2Pa;

S3、散焦调试与重熔改性:调整上述真空室内工作台的高度为500~700mm,束流为1mA,使电子束聚焦在所述试样表面,并记录此时聚焦电流;再将电子束下束点移至试样的一端,调整电子束加速电压为150kV,束流为3~6mA,扫描速度为200~360mm/min,增加聚焦电流以保证电子束光斑尺寸为3~5mm,且焦点位于所述试样表面上方2mm处,进行电子束重熔改性,得一道重熔硬化层;

S4、纳米重熔层制备:调整上述真空室内工作台沿垂直于电子束扫描方向行走,且行走距离为步骤S3中所述一道重熔硬化层宽度的75~85%,得搭接率为15~25%的搭接区;再按相同的工艺参数重复步骤S3中所述电子束重熔改性,得第二道重熔硬化层;然后依次重复上述调整工作台和电子束重熔改性工序,实现整个试样表面重熔改性,得TiBw/TC4复合材料表面纳米重熔层。

进一步地,步骤S3中,所述电子束的扫描轨迹为直线。

进一步地,步骤S3中,所述电子束重熔改性方式为电子束上散焦快速扫描。

进一步地,步骤S3中,电子束重熔改性的工艺参数为:电子束加速电压为150kV,束流为4mA,扫描速度为260mm/min,真空度为5×10-2Pa,工作高度为500mm,搭接率为18%。

需要进一步说明的是,本发明关键在于:

一方面选取原位自生网状结构TiBw/TC4复合材料为母材,上述母材是基于原位自生技术,经过球磨混粉、热压烧结等工序制备而成的;其中,母材中增强体的体积分数为3~8%,网状结构尺寸为90~110μm;当母材中增强体的含量过高,除影响整体母材塑性和韧性外,重熔层TiB容易聚集长大,很难达到纳米级,重熔硬化效果不明显;当母材中增强体的含量过低,重熔凝固过程中先析出TiB含量较低,进而降低后续金属凝固的形核率,细化效果不明显。

另一方面,选取电子束上散焦快速扫描,可实现大面积表层组织的迅速重熔,达到通过调整能量输入获得优化后重熔组织的目的,本发明中电子束表面重熔改性的优化工艺为:加速电压为150kV,束流为4mA,扫描速度为260mm/min,真空度为5×10-2Pa,工作高度为500mm,搭接率为18%。通过上述优化工艺可以最终获得厚度为100~300μm的硬化层,且硬化层内增强体的尺寸和基体晶粒尺寸均达到纳米级,表面硬度提升40~50%。

与现有技术相比,本发明的有益效果在于:

一、本发明通过电子束表面重熔改性处理后,复合材料表面由粗大(α+β)的片层组织转变为细小的马氏体组织,增强体尺寸得到大幅度细化,晶粒尺寸由几百微米转变为只有几十个微米,表面纳米重熔层的表面硬度提高40~50%,耐磨性也大大提高,一定程度上解决钛基复合材料低的硬度和耐磨性问题。

二、本发明制备的重熔层组织为纳米级,不破坏材料内部结构的基础上,仍保留材料原有塑形和韧性,一定程度上解决材料迅速断裂和失效问题,使材料拥有更高的比强度和表面性能,从而更好应用于航空航天、冶金工业、化工工业、医疗器械等领域,也填补了国内钛合金电子束重熔改性研究方面的空白。

附图说明

图1为电子束重熔改性示意图;

图2为TiBw/TC4复合材料表面纳米重熔层的结构示意图,其中,(a)纳米重熔层截面示意图;(b)多道搭接截面示意图;(c)纳米重熔层俯视图;(d)多道搭接俯视图;

图3为TiBw/TC4复合材料表面电子束重熔改性的原理示意图;

图4为TiBw/TC4复合材料表面纳米重熔层的微观组织,其中,(a)低倍SEM组织;(b)高倍重熔层SEM组织;(c)重熔层纳米尺寸马氏体TEM组织;(d)重熔层纳米尺寸TiB组织;

图5为TiBw/TC4复合材料表面纳米重熔层的截面硬度分布;

其中,1-电子束,2-重熔硬化层,3-试样,4-工作台,5-升降系统,6-夹具,7-真空室,8-搭接区。

具体实施方式

下面结合附图给出本发明较佳实施例,以详细说明本发明的技术方案,但本发明的保护范围不限于下述的实施例。

实施例1

TiBw/TC4复合材料表面纳米重熔层的制备方法,具体地,包括以下步骤:

第一步、试样制备与预处理

先将母材切割成尺寸为10mm×5mm×5mm的试样3,并打磨去除上述试样3表面氧化膜,再用酒精对其表面进行清理;以原位自生网状结构TiBw/TC4复合材料为母材,其中母材中增强体的体积分数为3%,网状结构尺寸为90μm。

第二步、试样工装与真空准备

利用夹具6将步骤S1中试样固定在真空室7内工作台4上,移动调整工作台4确保整个试样3表面都在电子束1工作区域,关闭真空室7后抽真空,使真空度达到5×10-2Pa。

第三步、散焦调试与重熔改性

调整上述真空室7内工作台4的高度为500mm,束流为1mA,使电子束1聚焦在试样3表面,并记录此时聚焦电流;再将电子束1的下束点移至试样3的一端,调整电子束1的加速电压为150kV,束流为3mA,扫描速度为200mm/min,增加聚焦电流以保证电子束1的光斑尺寸为3mm,且焦点位于试样3表面上方2mm处,进行电子束重熔改性,得一道重熔硬化层2;其中电子束1的扫描轨迹为直线,电子束重熔改性方式为电子束上散焦快速扫描。

第四步、纳米重熔层制备

调整上述真空室7内工作台4沿垂直于电子束1扫描方向行走,且行走距离为步骤S3中一道重熔硬化层2宽度的75%,得搭接率为15%的搭接区8;再按相同的工艺参数重复步骤S3中电子束重熔改性,得第二道重熔硬化层2;然后依次重复上述调整工作台4和电子束重熔改性工序,实现整个试样3表面重熔改性,得TiBw/TC4复合材料表面纳米重熔层。

参见附图1的电子束重熔改性示意图,基于电子束上散焦快速扫描方式,利用能量精确可控的电子束轰击网状结构TiBw/TC4材料表面,使材料表面快速熔化并凝固,得一道重熔硬化层。

参见附图2,可以看出一道重熔硬化层通过搭接方式得到整体试样表面的纳米重熔层;参见附图3中TiBw/TC4复合材料表面电子束重熔改性的原理示意图,由于电子束重熔工艺冷却速度极快,复合材料基体由粗大的(α+β)片层组织转变为细小的马氏体组织;同时,增强体发生熔化与凝固,先凝固的陶瓷增强相可为后凝固的金属相提供异质形核质点,整个过程伴随着多重晶粒细化机制。

参见附图4,经分析测试可知,TiBw/TC4复合材料表面纳米重熔层为若干道重熔硬化层搭接而成,由纳米级钛合金马氏体和纳米级TiB增强体组成,其中,纳米级TiB增强体的TiB晶须直径为50~100nm,纳米级钛合金马氏体的直径为80~120nm,重熔硬化层的厚度为100~300μm。

参见附图5中TiBw/TC4复合材料表面纳米重熔层的截面硬度分布,经电子束重熔改性后的TiBw/TC4复合材料表面硬度提升了40~50%。

实施例2

TiBw/TC4复合材料表面纳米重熔层的制备方法,具体地,包括以下步骤:

第一步、试样制备与预处理

先将母材切割成尺寸为10mm×5mm×5mm的试样3,并打磨去除上述试样3表面氧化膜,再用酒精对其表面进行清理;以原位自生网状结构TiBw/TC4复合材料为母材,其中母材中增强体的体积分数为8%,网状结构尺寸为110μm。

第二步、试样工装与真空准备

利用夹具6将步骤S1中试样固定在真空室7内工作台4上,移动调整工作台4确保整个试样3表面都在电子束1工作区域,关闭真空室7后抽真空,使真空度达到5×10-2Pa。

第三步、散焦调试与重熔改性

调整上述真空室7内工作台4的高度为700mm,束流为1mA,使电子束1聚焦在试样3表面,并记录此时聚焦电流;再将电子束1的下束点移至试样3的一端,调整电子束1的加速电压为150kV,束流为6mA,扫描速度为360mm/min,增加聚焦电流以保证电子束1的光斑尺寸为5mm,且焦点位于试样3表面上方2mm处,进行电子束重熔改性,得一道重熔硬化层2;其中电子束1的扫描轨迹为直线,电子束重熔改性方式为电子束上散焦快速扫描。

第四步、纳米重熔层制备

调整上述真空室7内工作台4沿垂直于电子束1扫描方向行走,且行走距离为步骤S3中一道重熔硬化层2宽度的85%,得搭接率为25%的搭接区8;再按相同的工艺参数重复步骤S3中电子束重熔改性,得第二道重熔硬化层2;然后依次重复上述调整工作台4和电子束重熔改性工序,实现整个试样3表面重熔改性,得TiBw/TC4复合材料表面纳米重熔层。

通过上述实施例制备的TiBw/TC4复合材料表面纳米重熔层为若干道重熔硬化层搭接而成,由纳米级钛合金马氏体和纳米级TiB增强体组成,其中,纳米级TiB增强体的TiB晶须直径为50~100nm,纳米级钛合金马氏体的直径为80~120nm,重熔硬化层的厚度为100~300μm。

实施例3

TiBw/TC4复合材料表面纳米重熔层的制备方法,具体地,包括以下步骤:

第一步、试样制备与预处理

先将母材切割成尺寸为10mm×5mm×5mm的试样3,并打磨去除上述试样3表面氧化膜,再用酒精对其表面进行清理;以原位自生网状结构TiBw/TC4复合材料为母材,其中母材中增强体的体积分数为5%,网状结构尺寸为100μm。

第二步、试样工装与真空准备

利用夹具6将步骤S1中试样固定在真空室7内工作台4上,移动调整工作台4确保整个试样3表面都在电子束1工作区域,关闭真空室7后抽真空,使真空度达到5×10-2Pa。

第三步、散焦调试与重熔改性

调整上述真空室7内工作台4的高度为600mm,束流为1mA,使电子束1聚焦在试样3表面,并记录此时聚焦电流;再将电子束1的下束点移至试样3的一端,调整电子束1的加速电压为150kV,束流为5mA,扫描速度为280mm/min,增加聚焦电流以保证电子束1的光斑尺寸为4mm,且焦点位于试样3表面上方2mm处,进行电子束重熔改性,得一道重熔硬化层2;其中电子束1的扫描轨迹为直线,电子束重熔改性方式为电子束上散焦快速扫描。

第四步、纳米重熔层制备

调整上述真空室7内工作台4沿垂直于电子束1扫描方向行走,且行走距离为步骤S3中一道重熔硬化层2宽度的80%,得搭接率为20%的搭接区8;再按相同的工艺参数重复步骤S3中电子束重熔改性,得第二道重熔硬化层2;然后依次重复上述调整工作台4和电子束重熔改性工序,实现整个试样3表面重熔改性,得TiBw/TC4复合材料表面纳米重熔层。

通过上述实施例制备的TiBw/TC4复合材料表面纳米重熔层为若干道重熔硬化层搭接而成,由纳米级钛合金马氏体和纳米级TiB增强体组成,其中,纳米级TiB增强体的TiB晶须直径为50~100nm,纳米级钛合金马氏体的直径为80~120nm,重熔硬化层的厚度为100~300μm。

实施例4

TiBw/TC4复合材料表面纳米重熔层的制备方法,具体地,包括以下步骤:

第一步、试样制备与预处理

先将母材切割成尺寸为10mm×5mm×5mm的试样3,并打磨去除上述试样3表面氧化膜,再用酒精对其表面进行清理;以原位自生网状结构TiBw/TC4复合材料为母材,其中母材中增强体的体积分数为6%,网状结构尺寸为105μm。

第二步、试样工装与真空准备

利用夹具6将步骤S1中试样固定在真空室7内工作台4上,移动调整工作台4确保整个试样3表面都在电子束1工作区域,关闭真空室7后抽真空,使真空度达到5×10-2Pa。

第三步、散焦调试与重熔改性

调整上述真空室7内工作台4的高度为500mm,束流为1mA,使电子束1聚焦在试样3表面,并记录此时聚焦电流;再将电子束1的下束点移至试样3的一端,调整电子束1的加速电压为150kV,束流为4mA,扫描速度为260mm/min,增加聚焦电流以保证电子束1的光斑尺寸为4mm,且焦点位于试样3表面上方2mm处,进行电子束重熔改性,得一道重熔硬化层2;其中电子束1的扫描轨迹为直线,电子束重熔改性方式为电子束上散焦快速扫描。

第四步、纳米重熔层制备

调整上述真空室7内工作台4沿垂直于电子束1扫描方向行走,且行走距离为步骤S3中一道重熔硬化层2宽度的80%,得搭接率为18%的搭接区8;再按相同的工艺参数重复步骤S3中电子束重熔改性,得第二道重熔硬化层2;然后依次重复上述调整工作台4和电子束重熔改性工序,实现整个试样3表面重熔改性,得TiBw/TC4复合材料表面纳米重熔层。

通过上述实施例制备的TiBw/TC4复合材料表面纳米重熔层为若干道重熔硬化层搭接而成,由纳米级钛合金马氏体和纳米级TiB增强体组成,其中,纳米级TiB增强体的TiB晶须直径为50~100nm,纳米级钛合金马氏体的直径为80~120nm,重熔硬化层的厚度为100~300μm。

综上所述,本发明采用电子束重熔改性技术在网状结构TiBw/TC4复合材料表面重构纳米重熔层,不破坏材料的内部结构,仍保留复合材料原有的优异综合力学性能,并进一步提高其表面硬度,提高幅度约40~50%,为复合材料表面改性提供一种新方法,同时提升钛基复合材料在航空、航天、石油、化工、冶金等领域的应用潜力,为其它金属复合材料的表面改性提供理论与技术指导。

以上所述为本发明的较佳实施例而已,但本发明不应该局限于该实施例所公开的内容。所以凡是不脱离本发明所公开的精神下完成的等效或修改,都落入本发明保护的范围。

一种TiBw/TC4复合材料表面纳米重熔层及其制备方法专利购买费用说明

专利买卖交易资料

Q:办理专利转让的流程及所需资料

A:专利权人变更需要办理著录项目变更手续,有代理机构的,变更手续应当由代理机构办理。

1:专利变更应当使用专利局统一制作的“著录项目变更申报书”提出。

2:按规定缴纳著录项目变更手续费。

3:同时提交相关证明文件原件。

4:专利权转移的,变更后的专利权人委托新专利代理机构的,应当提交变更后的全体专利申请人签字或者盖章的委托书。

Q:专利著录项目变更费用如何缴交

A:(1)直接到国家知识产权局受理大厅收费窗口缴纳,(2)通过代办处缴纳,(3)通过邮局或者银行汇款,更多缴纳方式

Q:专利转让变更,多久能出结果

A:著录项目变更请求书递交后,一般1-2个月左右就会收到通知,国家知识产权局会下达《转让手续合格通知书》。

动态评分

0.0

没有评分数据
没有评价数据