专利转让平台_买专利_卖专利_中国高校专利技术交易-买卖发明专利上知查网

全部分类
全部分类
一种由半导体催化芳烃或杂环芳烃三氟甲基化的方法

一种由半导体催化芳烃或杂环芳烃三氟甲基化的方法

IPC分类号 : C07C43/225,C07C41/22,C07C25/13,C07C17/32,C07C22/08,C07C323/09,C07C319/20,C07D235/08,C07D207/33,C07D241/16,C07D317/64,C07B39/00,B01J27/04

申请号
CN201610133821.1
可选规格
  • 专利类型: 发明专利
  • 法律状态: 有权
  • 申请日: 2016-03-10
  • 公开号: 105693480A
  • 公开日: 2016-06-22
  • 主分类号: C07C43/225
  • 专利权人: 福州大学

专利摘要

本发明公开了一种由半导体光催化芳烃或杂环芳烃三氟甲基化的方法,其采用三氟甲基亚磺酸钠作为三氟甲基来源,乙腈作为溶剂,在室温下,以可见光作为驱动力,采用硫化镉、石墨相氮化碳等常见的半导体光催化剂催化芳烃或杂环芳烃直接发生三氟甲基化反应。本发明方法所用原料廉价易得,且反应条件温和,适合普通大气环境下操作,其不仅丰富了芳烃与杂环芳烃三氟甲基化方法学,而且具有潜在的工业应用价值。

权利要求

1.一种由半导体催化芳烃或杂环芳烃三氟甲基化的方法,其特征在于:采用三氟甲基亚磺酸钠作为三氟甲基来源,乙腈作为溶剂,在室温下,以可见光作为驱动力,采用半导体光催化剂催化芳烃或杂环芳烃的C-H键直接进行三氟甲基化反应。

2.根据权利要求1所述由半导体催化芳烃或杂环芳烃三氟甲基化的方法,其特征在于:所述半导体光催化剂的导带电势ECB<-0.33vsNHE,价带电势EVB>0.6V,其包括硫化镉、石墨相氮化碳。

3.根据权利要求1所述由半导体催化芳烃或杂环芳烃三氟甲基化的方法,其特征在于:其操作包括以下步骤:

1)在0.3-0.8mmol三氟甲基亚磺酸钠中加入1-5mL乙腈,搅拌使三氟甲基亚磺酸钠溶解;

2)将步骤1)所得溶液移至装有10-20mg半导体光催化剂的反应器中,并向反应器中鼓入氧气30min,使溶液中氧气达到饱和,再加入0.2-0.5mL的芳烃或杂环芳烃,混匀后将反应器密封,300W氙灯下可见光光照24h。

说明书

技术领域

本发明属于有机合成技术领域,具体涉及一种由半导体催化芳烃或杂环芳烃三氟甲基化的方法。

背景技术

由于氟原子较小的原子尺寸与强的电负性,向有机分子中引入氟原子可以显著改变分子的物理化学性质和生物化学性质,如增大分子的极性,提高分子的脂溶性,增强分子在生物体新陈代谢过程中的稳定性等。据统计,目前有30%的农业化学品和20%的药物中至少含有一个氟原子。天然的含氟有机物极少,大多数的含氟有机物需要人为引入氟原子。三氟甲基化作为一种向有机分子中引入氟原子的有效方式被广泛应用于医药,农业化学品等的生产。含三氟甲基的药物有很多,如用来治疗关节炎的新药塞来昔布,抗艾滋药物依法韦仑,治疗糖尿病的特效药捷诺维等。

目前工业上生产三氟甲苯常用的方法是Swarts方法,即先将甲苯氯化得到三氯甲苯,再用路易斯酸三氟化锑或者氢氟酸将三氯甲苯氟化得到三氟甲苯。该方法步骤繁多,环境污染大。近些年来,芳烃与杂环芳烃的三氟甲基化研究有了较大发展。按照反应的底物不同,可以将反应方法大致分为两类,第一种是C-X键的三氟甲基化(X=Cl、Br、I、B(OH)2),第二种是C-H键的直接三氟甲基化。以Cu、Ag、Pd等催化剂为代表的C-X三氟甲基化反应体系具有选择性好,产率高的优点,但需要预先对C-H键进行功能化,使其转化成C-X键。从简化反应步骤,绿色化学,原子经济性等角度,直接C-H键的三氟甲基化更符合现代化学的要求。

光催化技术是利用光作为驱动力,可以克服一些传统热反应过程中需要的苛刻条件,或者完成一些热力学禁阻的反应。2011年,MacMillan等人首次成功将光催化技术应用到了芳烃与杂环芳烃的三氟甲基化反应中(DavidA.Nagib,MacMillan.Trifluoromethylationofarenesandheteroarenesbymeansofphotoredoxcatalysis.Nature480.224-228(2011)),其利用联吡啶钌作为光催化剂,以三氟甲烷磺酰氯为三氟甲基来源,在可见光下实现了芳烃与杂环芳烃C-H键的直接三氟甲基化,不仅条件温和,适用于在反应的后续过程中引入三氟甲基,同时产率高,底物适用性好。该反应体系虽然极大地发挥了光催化技术的优势,然而却受限于两点使其难以大规模实际应用:第一,以昂贵且毒性较大的均相催化剂联吡啶钌作为光催化剂,催化剂难以分离;第二,以不稳定的三氟甲烷磺酰氯作为三氟甲基来源,三氟甲烷磺酰氯极易水解,难以在普通大气环境中操作。

半导体光催化剂近40年来发展迅速,其光催化作用机制是建立在光激发后产生具有还原性的光生电子与氧化性的光生空穴,利用电子与空穴完成氧化还原反应,电子与空穴的还原与氧化能力受限于半导体自身的能带结构。与均相的光敏剂如染料,联吡啶钌等相比,半导体不仅同样可以引发氧化还原反应,同时具有非均相催化剂稳定且易分离的优点,更适合大规模的实际生产应用。

发明内容

本发明的目的在于提供一种由半导体催化芳烃或杂环芳烃三氟甲基化的方法,其是利用半导体作为可见光催化剂,三氟甲基亚磺酸钠(CF3SO2Na)作为三氟甲基前驱体,乙腈作为溶剂,实现芳烃与杂环芳烃C-H键的直接三氟甲基化。其为芳烃与杂环芳烃三氟甲基化这一重要的有机反应提供了一种更加温和有效的催化方法,并进一步丰富了半导体光催化技术在有机合成领域的应用。

为实现上述目的,本发明采用如下技术方案:

一种由半导体催化芳烃或杂环芳烃三氟甲基化的方法,是采用三氟甲基亚磺酸钠作为三氟甲基来源,乙腈作为溶剂,在室温下,以可见光作为驱动力,采用半导体光催化剂催化芳烃或杂环芳烃的C-H键直接进行三氟甲基化反应。

所述半导体光催化剂需具备合适的能带位置,即其导带电势ECB<-0.33vsNHE,价带电势EVB>0.6V,适用的半导体光催化剂包括硫化镉、石墨相氮化碳。

该方法的操作包括以下步骤:

1)在0.3-0.8mmol三氟甲基亚磺酸钠中加入1-5mL乙腈,搅拌使三氟甲基亚磺酸钠溶解;

2)将步骤1)所得溶液移至装有10-20mg半导体光催化剂的反应器中,并向反应器中鼓入氧气30min,使溶液中氧气达到饱和,再加入0.2-0.5mL的芳烃或杂环芳烃,混匀后将反应器密封,300W氙灯下可见光光照24h。

通过控制光强与入射光的波长可确定其发生的是一个光催化反应,半导体与光不可或缺,且随着光强的增大,反应效率明显提升。同时,波长的控制实验结果与半导体自身的光吸收性质一致,以硫化镉为例,硫化镉的最大吸收波长为550nm,当以蓝光照射(420nm-500nm)反应结果与普通的可见光(波长大于420nm)反应结果基本一致,而当以绿色光(波长在550nm到650nm)照射,反应基本不发生。

同时,本发明反应必须在有氧条件下进行,氧气在其中所起的作用是光生电子的牺牲剂。

必须要指出,并不是所有的可见光半导体光催化剂都可以使该反应发生,只有具备合适能带位置的半导体才可以。对半导体能带位置的要求是:不仅具有足够大的价带电势(EVB>0.6V),同时也要有足够的还原能力,即可以活化氧(导带电势<-0.33vsNHE),导带与价带的位置必须都要满足才能引发这个反应。如α-CdS,g-C3N4可以,而氧化能力更强的WO3却不行,原因就在于WO3的导带还原能力较弱,无法还原氧,这就导致光生电子无法转走,使得与空穴复合几率大大增加。同时,通过比较试验发现,α-CdS的反应活性要好于β-CdS。

本发明的显著优点在于:

(1)本发明方法不需要对C-H键预先进行官能团化,省去了传统方法中需要先将C-H键转化成C-X键(X=Cl、Br、I、B(OH)2等)的复杂反应步骤,操作简单。

(2)本发明以相对廉价且对空气稳定的三氟甲基亚磺酸钠作为三氟甲基来源,合理利用了三氟甲基亚磺酸钠的氧化电势与半导体的能带结构。

(3)本发明利用可见光作为驱动力,避免了传统热反应三氟甲基化过程中所需要的苛刻条件,使反应条件温和,即使以家用LED灯作为光源也可顺利发生反应。

(4)本发明以常见的且相对稳定、廉价的半导体如CdS、g-C3N4等作为可见光催化剂,利用光生空穴作为氧化剂,去氧化CF3SO2Na,解决了传统方法中采用过氧化物等强氧化剂作为氧化物种而存在的环境污染大且危险系数高等问题,用催化的方法取代了传统的消耗反应体系,且催化剂在反应过程中保持稳定,易于分离,经循环实验表明,在经过5次循环之后,催化剂的活性基本不变,说明其可以多次循环使用。

(5)本发明所用原料价廉易得,该反应可在普通大气环境、室温、光照条件下进行,反应条件温和,不需要加热等其他的能量来源。

(6)本发明为非均相光催化有机合成体系,通过底物扩展试验发现(见表1),该反应体系具有良好的基团容忍性,底物适用性广,对于不同性质取代基取代的芳烃或杂环芳烃都可以有效的实现C-H键的直接三氟甲基化。

表1以硫化镉为光催化剂进行的底物扩展试验

附图说明

图1为实施例1所制备的α-CdS的XRD图(A)与DRS图(B)。

图2为以苯甲醚为反应底物得到的GC-MS图。

图3为以苯甲醚为反应底物得到的19FNMR图。

图4为实施例3中CdS循环使用次数与三氟甲苯产率的变化关系图。

图5为实施例4反应过程中捕获到的中间产物三氟甲基自由基(A)与超氧自由基(B)的ESR图。

具体实施方式

为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。

实施例1制备半导体光催化剂α-CdS

其制备方法包括以下步骤:

1)取2-5mmol(优选2mmol)的醋酸镉溶于100-500mL(优选100mL)的去离子水中,充分搅拌使其溶解;

2)取3-7mmol(优选3mmol)的硫化钠溶于100-500mL(优选150mL)去离子水中,搅拌溶解;

3)将步骤2)所得硫化钠水溶液逐滴缓慢滴加到步骤1)所得醋酸镉水溶液中,剧烈搅拌12-24h(优选12h)后,再在200-240℃(优选230℃)下水热反应24h,分别用去离子水和无水乙醇离心洗涤5次,真空烘箱中60-80℃(优选60℃)下烘12-24h(优选12h),即得。需要注意的是,在制备过程中醋酸镉要保持过量。

图1为所制备α-CdS的XRD图(A)与DRS图(B)。如图可见,所制备的CdS催化剂具有良好的结晶度,其最大吸收波长在550nm。

实施例2以苯甲醚为反应底物、CdS为半导体光催化剂进行光催化三氟甲基化反应

1)称取0.3mmol的CF3SO2Na于2.5mL的离心管中,加入1mL乙腈充分搅拌,使三氟甲基亚磺酸钠溶解;

2)称取实施例1制备的α-CdS10mg于50mL的Schlenk反应器中,然后将步骤1)所得溶液加入到装有CdS的Schlenk反应器中,并往反应器中通入氧气30min,以使乙腈中的氧气达到饱和,再加入0.2mL的苯甲醚,混匀后将反应器密封,300W氙灯下光照24h;

3)将反应液离心分离,取上清液进行GC-MS与19FNMR分析。

图2和图3分别为所得上清液的GC-MS图和19FNMR图。如图可见,反应完成后,体系组成简单,只有目标产物三氟甲基苯甲醚与底物苯甲醚。

实施例3以苯为反应底物,将CdS进行连续的循环实验,测试其在该反应体系中的稳定性

1)称取0.8mmol的CF3SO2Na于2.5mL的离心管中,加入5mL乙腈充分搅拌,使三氟甲基亚磺酸钠溶解;

2)称取实施例1制备的α-CdS20mg于50mL的Schlenk反应器中,然后将步骤1)所得溶液加入到装有CdS的Schlenk反应器中,并往反应器中通入氧气30min,以使乙腈中的氧气达到饱和,再加入0.5mL的苯,混匀后将反应器密封,300W氙灯下光照24h;

3)将反应液离心分离,上清液进行GC-MS与19FNMR分析;

4)将步骤3)离心后的固体用水和无水乙醇各清洗5次,然后于60℃真空烘干12h,用烘干后的固体作为催化剂进行下一次实验,如此循环4次,实验结果见图4。

步骤3)所得上清液的GC-MS图及19FNMR图与图2、3一致;而由图4可以看出,将催化剂循环使用,在经过了5次循环之后,催化剂的活性基本不变,说明在该体系中催化剂能保持稳定,可实现多次循环使用。

实施例4对反应过程中间体产物的捕获

称取0.5mmol的CF3SO2Na于2.5mL的离心管中,加入1mL乙腈充分搅拌,使三氟甲基亚磺酸钠溶解,然后加入10mgCdS混匀,分别以0.01M的MNP为三氟甲基的捕获剂,0.01M的DMPO(二甲基吡啶N-氧化物)为超氧自由基捕获剂,以电子顺磁共振(ESR)为分析手段进行ESR检测,结果见图5。

如图5可见,随着光照时间的延长,所捕捉到的自由基信号增强。

以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

一种由半导体催化芳烃或杂环芳烃三氟甲基化的方法专利购买费用说明

专利买卖交易资料

Q:办理专利转让的流程及所需资料

A:专利权人变更需要办理著录项目变更手续,有代理机构的,变更手续应当由代理机构办理。

1:专利变更应当使用专利局统一制作的“著录项目变更申报书”提出。

2:按规定缴纳著录项目变更手续费。

3:同时提交相关证明文件原件。

4:专利权转移的,变更后的专利权人委托新专利代理机构的,应当提交变更后的全体专利申请人签字或者盖章的委托书。

Q:专利著录项目变更费用如何缴交

A:(1)直接到国家知识产权局受理大厅收费窗口缴纳,(2)通过代办处缴纳,(3)通过邮局或者银行汇款,更多缴纳方式

Q:专利转让变更,多久能出结果

A:著录项目变更请求书递交后,一般1-2个月左右就会收到通知,国家知识产权局会下达《转让手续合格通知书》。

动态评分

0.0

没有评分数据
没有评价数据
×

打开微信,点击底部的“发现”

使用“扫一扫”即可将网页分享至朋友圈

×
复制
用户中心
我的足迹
我的收藏

您的购物车还是空的,您可以

  • 微信公众号

    微信公众号
在线留言
返回顶部