专利摘要
专利摘要
本实用新型提供一种用于空分装置的节能加热装置,属于空气分离技术领域。该装置包括压缩机、换热器、膨胀机、蓄热器和电加热器,压缩机的进气口与空分装置的污氮管道相连,压缩机的排气口与换热器的热侧进气口相连,换热器的热侧排气口与膨胀机的进气口相连,换热器的冷侧进气口与空分装置的污氮管道相连,换热器的冷侧排气口与空分装置的纯化器相连,蓄热器的热端接口与压缩机的排气口及空分装置的纯化器相连,蓄热器的冷端接口与膨胀机的进气口及空分装置的污氮管道相连,膨胀机的排气口与空分装置的氮水预冷器相连,本实用新型可节约空分装置的纯化器的再生加热电耗,在冶金、能源和化工等行业的空气分离场合具有重要节能意义。
权利要求
1.一种用于空分装置的节能加热装置,其特征在于:包括压缩机(1)、换热器(2)和膨胀机(3),压缩机(1)的进气口与空分装置(10)的污氮管道(102)相连,压缩机(1)的排气口与换热器(2)的热侧进气口相连,换热器(2)的热侧排气口与膨胀机(3)的进气口相连,换热器(2)的冷侧进气口与空分装置(10)的污氮管道(102)相连,换热器(2)的冷侧排气口与空分装置(10)的纯化器(101)相连,膨胀机(3)的排气口与空分装置(10)的氮水预冷器(103)相连,膨胀机(3)与压缩机(1)之间设置联轴器(5)。
2.根据权利要求1所述的用于空分装置的节能加热装置,其特征在于:还包括蓄热器(4),蓄热器(4)的热端接口与压缩机(1)的排气口及空分装置(10)的纯化器(101)相连,蓄热器(4)的冷端接口与膨胀机(3)的进气口及空分装置(10)的污氮管道(102)相连。
3.根据权利要求1所述的用于空分装置的节能加热装置,其特征在于:还包括电加热器,电加热器的进气口与空分装置(10)的污氮管道(102)相连,电加热器的排气口与空分装置(10)的纯化器(101)相连。
4.根据权利要求1所述的用于空分装置的节能加热装置,其特征在于:所述膨胀机(3)排出的污氮气送往空分装置(10)的氮水预冷器(103)。
5.根据权利要求1所述的用于空分装置的节能加热装置,其特征在于:所述膨胀机(3)对外做的功通过联轴器(5)传递给压缩机(1)。
说明书
技术领域
本实用新型涉及空气分离技术领域,特别是指一种用于空分装置的节能加热装置。
背景技术
空分装置在冶金、能源、化工等领域中应用十分广泛,主要用于将空气进行组分分离以得到一系列产物气。在空分装置的产物气中,作为产品气输出的有:高纯氧气(≥99.6%)和高纯氮气(≥99.9%)等;作为副产气输出的有:污氮气(氮含量95%左右)。空分装置主要由以下设备组成:由管路依次连接的,用于压缩空气的空压机、用于冷却空气的氮水预冷器、用于纯化空气的纯化器、用于液化并分离空气的冷箱,以及用于输出产物气的管道,主要包括:用于输出氧气的氧气管道、用于输出氮气的氮气管道,以及用于输出污氮气的污氮管道等。在某些工况下,部分高纯氮气也会因各种原因而并入污氮管道。
空分装置的纯化器的作用是将原料空气中的杂质(水蒸气、二氧化碳以及部分碳氢化合物等)脱除至痕量水平,由此避免因杂质造成的管道冻结堵塞、爆炸等危害,保证其后续工序的顺利进行。当前绝大部分空分装置均采用基于变温吸附工艺的纯化器,其工作原理为:将原料空气持续通入纯化器的吸附床中进行杂质吸附从而实现空气的纯化,当到达转效点或预定时间之后,对吸附床进行再生以便其重复使用。吸附床的再生先后经历加热和冷却两个步骤,其中,加热步骤用于提高吸附床温度以脱附杂质,冷却步骤主要用于降低吸附床的温度以便恢复其吸附能力。因此,纯化器中一般设有两台吸附床切换使用,一台进行吸附纯化,另一台进行再生,从而使得纯化器可以连续的纯化空气。
纯化器再生过程中的加热和冷却是通过间接法实现的。当纯化器需要加热时,将污氮气加热至高温(150-170℃左右)后通入吸附床中以对其进行加热,现有空分装置的纯化器普遍采用电加热器进行污氮气加热,其再生能耗巨大(约占空分装置总能耗的5-7%),因此降低纯化器的加热能耗具有重要节能意义;而当纯化器需要冷却时,将常温污氮气通入吸附床中以对其进行冷却。
实用新型内容
本实用新型要解决的技术问题是提供一种用于空分装置的节能加热装置。
该装置包括压缩机、换热器和膨胀机,压缩机的进气口与空分装置的污氮管道相连,压缩机的排气口与换热器的热侧进气口相连,换热器的热侧排气口与膨胀机的进气口相连,换热器的冷侧进气口与空分装置的污氮管道相连,换热器的冷侧排气口与空分装置的纯化器相连,膨胀机的排气口与空分装置的氮水预冷器相连,膨胀机与压缩机之间设置联轴器。
该装置还包括蓄热器,蓄热器的热端接口与压缩机的排气口及空分装置的纯化器相连,蓄热器的冷端接口与膨胀机的进气口及空分装置的污氮管道相连。
该装置还包括电加热器的进气口与空分装置的污氮管道相连,电加热器的排气口与空分装置的纯化器相连。
膨胀机排出的污氮气送往空分装置的氮水预冷器。
膨胀机对外做的功通过联轴器传递给压缩机。
应用该装置的方法,具体为:
当空分装置的纯化器需要加热时,从空分装置的污氮管道引出第一股污氮气通入压缩机升压后排出,通入换热器的热侧释放热量后排出,随后通入膨胀机膨胀降压并对外做功;从空分装置的污氮管道引出第二股污氮气通入换热器的冷侧吸收热量后排出,通入空分装置的纯化器以对其进行加热再生;从空分装置的污氮管道引出第三股污氮气通入蓄热器吸收热量后排出,然后通入空分装置的纯化器以对其进行加热再生;
当空分装置的纯化器不需要加热时,从空分装置的污氮管道引出第一股污氮气通入压缩机升压后排出,然后通入蓄热器释放热量后排出,随后通入膨胀机膨胀降压并对外做功。
本实用新型的上述技术方案的有益效果如下:
本实用新型中通过电能驱动压缩机对常压常温的污氮气进行压缩,得到一股高压高温的污氮气,实现将电能转化为热能,高压高温的污氮气经换热器释放热量后成为高压常温的污氮气,进一步的,该污氮气通过膨胀机的膨胀做功而获得机械能,成为常压低温的污氮气,该机械能通过联轴器可用于抵消压缩机的部分功耗,由此减少了压缩机的驱动电耗。根据上述流程,通过能量守恒定律可知,从换热器获得的热量等于电能加上污氮气焓差,由此实现了所得热量大于电耗,因此,与电加热的相比,在同等热量需求下,采用本实用新型方案可节约电耗,另外,膨胀机出口的污氮气温度低于常温,即获得了冷量,该部分冷量可以减少氮水预冷器中制冷机的制冷量,实现进一步节电。可见,本实用新型的技术方案对纯化器和氮水预冷器均具有节电效果,因而对空分装置具有重要节能意义。
附图说明
图1为本实用新型的用于空分装置的节能加热装置的实施例1流程示意图;
图2为本实用新型的用于空分装置的节能加热装置的实施例2流程示意图。
其中:1-压缩机,2-换热器,3-膨胀机,4-蓄热器,5-联轴器,10-空分装置,61-阀门一,62-阀门二,63-阀门三,64-阀门四,65-阀门五,101-纯化器,102-污氮管道,103-氮水预冷器。
具体实施方式
为使本实用新型要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
本实用新型提供一种用于空分装置的节能加热装置。
该装置包括压缩机1、换热器2和膨胀机3,压缩机1的进气口与空分装置10的污氮管道102相连,压缩机1的排气口与换热器2的热侧进气口相连,换热器2的热侧排气口与膨胀机3的进气口相连,换热器2的冷侧进气口与空分装置10的污氮管道102相连,换热器2的冷侧排气口与空分装置10的纯化器101相连,膨胀机3的排气口与空分装置10的氮水预冷器103相连,膨胀机3与压缩机1之间设置联轴器5。
该装置还包括蓄热器4,蓄热器4的热端接口与压缩机1的排气口及空分装置10的纯化器101相连,蓄热器4的冷端接口与膨胀机3的进气口及空分装置10的污氮管道102相连。
该装置还包括电加热器,电加热器的进气口与空分装置10的污氮管道102相连,电加热器的排气口与空分装置10的纯化器101相连。
膨胀机3排出的污氮气送往空分装置10的氮水预冷器103。
膨胀机3对外做的功通过联轴器5传递给压缩机1。
应用该装置的方法,具体为:
当空分装置10的纯化器101需要加热时,从空分装置10的污氮管道102引出第一股污氮气通入压缩机1升压后排出,通入换热器2的热侧释放热量后排出,随后通入膨胀机3膨胀降压并对外做功;从空分装置10的污氮管道102引出第二股污氮气通入换热器2的冷侧吸收热量后排出,通入空分装置10的纯化器101以对其进行加热再生;从空分装置10的污氮管道102引出第三股污氮气通入蓄热器4吸收热量后排出,然后通入空分装置10的纯化器101以对其进行加热再生;
当空分装置10的纯化器101不需要加热时,从空分装置10的污氮管道102引出第一股污氮气通入压缩机1升压后排出,然后通入蓄热器4释放热量后排出,随后通入膨胀机3膨胀降压并对外做功。
下面结合具体实施例予以说明。
实施例1
如图1所示,本实施例流程内包括压缩机1,换热器2,膨胀机3,联轴器5,空分装置10,纯化器101,污氮管道102,氮水预冷器103。
该节能加热装置包括压缩机1、换热器2和膨胀机3,压缩机1的进气口通过管道连接于空分装置10的污氮管道102,压缩机1的排气口通过管道连接于换热器2的热侧进气口,换热器2的热侧排气口通过管道连接于膨胀机3的进气口,换热器2的冷侧进气口通过管道连接于空分装置10的污氮管道102,换热器2的冷侧排气口通过管道连接于空分装置10的纯化器101。
膨胀机3的排气口通过管道连接于空分装置10的氮水预冷器103,用于传递污氮气所携带的冷量。
膨胀机3和压缩机1之间设有联轴器5,用于传递机械功。
当空分装置10的纯化器101需要加热时,从空分装置10的污氮管道102引出第一股污氮气,将该污氮气通入压缩机1升压后排出,然后通入换热器2的热侧释放热量后排出,随后通入膨胀机3膨胀降压并对外做功;从空分装置10的污氮管道102引出第二股污氮气,将该污氮气通入换热器2的冷侧吸收热量后排出,然后通入空分装置10的纯化器101以对其进行加热再生。
作为本实施例优选,膨胀机3的排出的气体送往空分装置10的氮水预冷器103,用于给氮水预冷器103提供一定的冷量。
作为本实施例优选,膨胀机3对外做的功通过联轴器5传递给压缩机1,由此在一定程度上减少了压缩机2的电耗。
以钢铁冶金企业的一台氧产量20000Nm3/h的空分装置为例对本实用新型技术方案进行分析说明。空分装置的其主要气流参数如表1所示。根据表1可知,用于加热纯化器的第二股污氮气流量为20000Nm3/h,因此根据方案需要,设通入节能加热装置的第一股污氮气流量为20000Nm3/h。此外,设节能加热装置中的压缩机和膨胀机经历的热力过程分别为绝热压缩和绝热膨胀,且绝热效率均为0.85;设节能加热装置中的换热器的冷侧和热侧换热温差为10℃;设空分装置的污管道内的污氮气温度为30℃,纯化器所需的加热温度为170℃。经计算获得表2所示的相关结果。如表2所示,节能加热装置的制热COP等于1.96,这意味着相对于普通电加热器,节能加热装置可节电50%左右。此外,节能加热装置还获得了509kW的冷量,该冷量可降低氮水预冷器中的冷冻机的制冷负荷,如果取冷冻机的COP=3.5进行电耗折算,则相当于节约冷冻机电耗145kW。综上所述,将冷冻机节电量折算至压缩机驱动功耗,节能加热装置的制热COP达到2.7,这意味相对于普通电加热器,节能加热装置可节电63%左右。
表1空分装置的流程参数
表2节能加热装置流程计算结果
实施例2
如图2所示,该装置除包括压缩机1、换热器2、膨胀机3、联轴器5、空分装置10、纯化器101、污氮管道102、氮水预冷器103外,还包括蓄热器4和用于控制气体流动的阀门一61、阀门二62、阀门三63、阀门四64以及阀门五65,这样可以使得节能加热装置能够连续运行,而不论纯化器是否处于加热步骤。
该装置中压缩机1的进气口通过管道连接于空分装置10的污氮管道102,压缩机1的排气口通过管道连接于换热器2的热侧进气口,优选地,所述管道上设有阀门一61,换热器2的热侧排气口通过管道连接于膨胀机3的进气口,换热器2的冷侧进气口通过管道连接于空分装置10的污氮管道102,换热器2的冷侧排气口通过管道连接于空分装置10的纯化器101。
蓄热器4的热端接口通过管道连接于压缩机1的排气口,所述管道上设有阀门二62,蓄热器4的冷端接口通过管道连接于膨胀机3的进气口,所述管道上设有阀门三63,蓄热器4的热端接口还通过管道连接于空分装置10的纯化器101,所述管道上设有阀门四64,蓄热器4的冷端接口还通过管道连接于空分装置10的污氮管道102,所述管道上设有阀门五65。
膨胀机3的排气口通过管道连接于空分装置10的氮水预冷器103,用于传递污氮气所携带的冷量。
膨胀机3和压缩机1之间设有联轴器5,用于传递机械功。
当空分装置10的纯化器101需要加热时,阀门一61、阀门四64及阀门五65开启,阀门二62和阀门三63关闭;从空分装置10的污氮管道102引出第一股污氮气,将该污氮气通入压缩机1升压后排出,然后进入换热器2的热侧释放热量后排出,随后通入膨胀机3膨胀降压并对外做功;从空分装置10的污氮管102道引出第二股污氮气,将该污氮气通入换热器2的冷侧吸收热量后排出,然后通入空分装置10的纯化器101以对其进行加热再生;从空分装置10的污氮管道102引出第三股污氮气,将该污氮气通入蓄热器4吸收热量后排出,然后通入空分装置10的纯化器101以对其进行加热再生。
当空分装置的纯化器不需要加热时,阀门一61、阀门四64及阀门五65关闭,阀门二62和阀门三63开启;从空分装置10的污氮管道102引出第一股污氮气,将该股污氮气通入压缩机1升压后排出,然后进入蓄热器4释放热量后排出,随后通入膨胀机3膨胀降压并对外做功。
膨胀机3的排出的气体送往空分装置10的氮水预冷器103,用于给氮水预冷器103提供一定的冷量。
膨胀机3对外做的功通过联轴器5传递给压缩机1,由此在一定程度上减少了压缩机2的电耗。
上述装置流程在具体应用中,在蓄热器的作用下,节能加热装置连续运行,而不论纯化器是否处于加热步骤。基于实施例1的空分装置和各种参数,假设纯化器的再生过程中加热步骤和非加热步骤的时长之比为1:3,因此根据方案需要,通入节能加热装置的换热器热侧的第一股污氮气流量应当为5000Nm3/h,通入换热器冷侧第二股污氮气流量应当为5000Nm
表3节能加热装置流程计算结果
以上所述是本实用新型的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本实用新型所述原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本实用新型的保护范围。
用于空分装置的节能加热装置专利购买费用说明
Q:办理专利转让的流程及所需资料
A:专利权人变更需要办理著录项目变更手续,有代理机构的,变更手续应当由代理机构办理。
1:专利变更应当使用专利局统一制作的“著录项目变更申报书”提出。
2:按规定缴纳著录项目变更手续费。
3:同时提交相关证明文件原件。
4:专利权转移的,变更后的专利权人委托新专利代理机构的,应当提交变更后的全体专利申请人签字或者盖章的委托书。
Q:专利著录项目变更费用如何缴交
A:(1)直接到国家知识产权局受理大厅收费窗口缴纳,(2)通过代办处缴纳,(3)通过邮局或者银行汇款,更多缴纳方式
Q:专利转让变更,多久能出结果
A:著录项目变更请求书递交后,一般1-2个月左右就会收到通知,国家知识产权局会下达《转让手续合格通知书》。
动态评分
0.0