专利转让平台_买专利_卖专利_中国高校专利技术交易-买卖发明专利上知查网

全部分类
全部分类
一种纳米材料等离子体表面改造的方法

一种纳米材料等离子体表面改造的方法

IPC分类号 : B82B3/00,B82Y30/00,B82Y40/00

申请号
CN201811384316.X
可选规格
  • 专利类型: 发明专利
  • 法律状态: 有权
  • 申请日: 2018-11-20
  • 公开号: 109553066B
  • 公开日: 2019-04-02
  • 主分类号: B82B3/00
  • 专利权人: 上海交通大学

专利摘要

本发明公开了一种纳米材料等离子体表面改造的方法,涉及电子、材料、医学、航空航天中的微纳加工领域,包括以下步骤:1、设置介质阻挡放电型的等离子体反应装置;2、在空气间隙中放置基底材料;3、添加工质溶液;4、激励产生等离子体并作用于基底材料表面。本发明提出了将加热、反应和相变沉积相融合的方法,具有广谱适应性、灵活性、可靠性,在室温或自然环境温度范围内采用无需密封的简易装置,实现材料的表面改造过程,适用于多种异型结构和大面积工件改造。

权利要求

1.一种纳米材料等离子体表面改造的方法,其特征在于,所述方法包括以下步骤:

步骤1、设置介质阻挡放电型的等离子体反应装置;

步骤2、在空气间隙中放置基底材料;

步骤3、添加工质溶液;

步骤4、激励产生等离子体并作用于基底材料表面。

2.如权利要求1所述的纳米材料等离子体表面改造的方法,其特征在于,所述步骤1还包括:

步骤1.1、设置所述等离子体反应装置的扩散电极和激励电极;

步骤1.2、在所述扩散电极和所述激励电极之间设置所述空气间隙;

步骤1.3、所述扩散电极和所述激励电极分别与等离子体激励电路连接。

3.如权利要求2所述的纳米材料等离子体表面改造的方法,其特征在于,所述步骤1.1中的所述扩散电极的组成包括以下情况:(1)所述扩散电极包括扩散电极层和扩散绝缘介质阻挡层,所述扩散绝缘介质阻挡层置于所述扩散电极层和所述激励电极之间,所述扩散电极层的材料包括金属材料、半导体材料;(2)所述扩散电极包括扩散电极层、扩散绝缘介质阻挡层和扩散工质溶液储藏层,所述扩散绝缘介质阻挡层置于所述扩散电极层和所述激励电极之间,所述扩散工质溶液储藏层置于所述扩散绝缘介质阻挡层和所述激励电极之间,所述扩散电极层的材料包括金属材料、半导体材料。

4.如权利要求2所述的纳米材料等离子体表面改造的方法,其特征在于,所述步骤1.1中的所述激励电极的组成包括以下情况:(1)所述激励电极采用金属材料;(2)所述激励电极采用半导体材料;(3)所述激励电极包括激励电极层和激励绝缘介质阻挡层,所述激励电极层的材料包括金属材料、半导体材料;(4)所述激励电极包括激励电极层、激励绝缘介质阻挡层和激励工质溶液储藏层,所述激励电极层的材料包括金属材料、半导体材料。

5.如权利要求3所述的纳米材料等离子体表面改造的方法,其特征在于,所述扩散电极包括单个金属电极、单个半导体电极、多个金属电极组成的阵列、多个半导体电极组成的阵列;所述扩散电极层的材料包括单质块材和沉积在绝缘基片上薄膜材料,所述扩散工质溶液储藏层的材料包括多孔陶瓷材料和多孔有机材料。

6.如权利要求4所述的纳米材料等离子体表面改造的方法,其特征在于,所述激励电极包括单个金属电极、单个半导体电极、多个金属电极组成的阵列、多个半导体电极组成的阵列;所述激励电极层的材料包括单质块材和沉积在绝缘基片上薄膜材料,所述激励工质溶液储藏层的材料包括多孔陶瓷材料和多孔有机材料。

7.如权利要求1所述的纳米材料等离子体表面改造的方法,其特征在于,所述步骤2还包括在所述基底材料表面设置纳米结构,所述纳米结构包括零维纳米结构、一维纳米结构、二维纳米结构、不同纳米结构的复合结构。

8.如权利要求1所述的纳米材料等离子体表面改造的方法,其特征在于,所述步骤3具体为根据所述步骤1中的所述等离子体反应装置的组成情况添加所述工质溶液,具体为:所述等离子体反应装置中设有扩散工质溶液储藏层和激励工质溶液储藏层时,在所述扩散工质溶液储藏层、所述激励工质溶液储藏层中分别添加所述工质溶液;所述等离子体反应装置中未设扩散工质溶液储藏层和激励工质溶液储藏层时,在所述基底材料表面添加所述工质溶液。

9.如权利要求1所述的纳米材料等离子体表面改造的方法,其特征在于,所述步骤3中的所述工质溶液包括以下情况:(1)所述工质溶液采用纳米材料的浑浊液,包括水溶液、有机溶液;(2)所述工质溶液采用对所述基底材料表面纳米结构有腐蚀作用的酸;(3)所述工质溶液采用对所述基底材料表面纳米结构有腐蚀作用的碱;(4)所述工质溶液采用盐溶液,包括水溶液、有机溶液;(5)所述工质溶液采用水;(6)所述工质溶液采用有机液体。

10.如权利要求1所述的纳米材料等离子体表面改造的方法,其特征在于,所述基底材料的温度包括10~30℃、30~100℃、100~300℃。

说明书

技术领域

本发明涉及电子、材料、医学、航空航天中的微纳加工领域,尤其涉及一种纳米材料等离子体表面改造的方法。

背景技术

纳米材料的加工制备技术是纳米科学技术工程应用的核心关键,是获得纳米尺度效应、形成功能器件的关键先决条件。但对于单一类型、单一成分的纳米材料,有些无法直接具备优良的性能,有些会因适当地掺杂或者结合其他类型的纳米结构而使性能变得更优。因此,纳米材料的表面改造受到业界极大重视,包括在晶格内部掺杂、表面沉积其他类型的纳米结构并形成与其他纳米结构的界面、在纳米结构表面增加化学基团。

通过对公开文献的调研发现,当前纳米结构的表面改造方法缺乏一种将加热、反应和相变沉积相融合的技术路线,降低对工艺环境要求,无需高温、高压或真空环境,将大量存在于液态溶液中的、用于表面改造的化学物质引入到反应沉积体系中,从而有效提高工艺路线的广谱适应性。

因此,本领域的技术人员致力于开发一种纳米材料等离子体表面改造的方法,将加热、反应和相变沉积相融合,具有广谱适应性、灵活性、可靠性且适用于多种异型结构和大面积工件改造,在室温或自然环境温度范围内采用无需密封的简易装置,即可完成材料的表面改造过程。

发明内容

有鉴于现有技术的上述缺陷,本发明所要解决的技术问题是如何实现加热、反应和相变沉积的融合,使材料的表面改造方法更具广谱适应性、灵活性、可靠性,利用无需密封的简易装置使材料的表面改造过程在室温或自然环境温度范围内即可完成。

为实现上述目的,本发明提供了一种纳米材料等离子体表面改造的方法,包括以下步骤:

步骤1、设置介质阻挡放电型的等离子体反应装置;

进一步地,设置所述等离子体反应装置的扩散电极和激励电极;在所述扩散电极和所述激励电极之间设置所述空气间隙;所述扩散电极和所述激励电极分别与等离子体激励电路连接;

进一步地,所述扩散电极的组成包括以下情况:(1)所述扩散电极包括扩散电极层和扩散绝缘介质阻挡层,所述扩散绝缘介质阻挡层置于所述扩散电极层和所述激励电极之间,所述扩散电极层的材料包括金属材料、半导体材料;(2)所述扩散电极包括扩散电极层、扩散绝缘介质阻挡层和扩散工质溶液储藏层,所述扩散绝缘介质阻挡层置于所述扩散电极层和所述激励电极之间,所述扩散工质溶液储藏层置于所述扩散绝缘介质阻挡层和所述激励电极之间,所述扩散电极层的材料包括金属材料、半导体材料;

进一步地,所述激励电极的组成包括以下情况:(1)所述激励电极采用金属材料;(2)所述激励电极采用半导体材料;(3)所述激励电极包括激励电极层和激励绝缘介质阻挡层,所述激励电极层的材料包括金属材料、半导体材料;(4)所述激励电极包括激励电极层、激励绝缘介质阻挡层和激励工质溶液储藏层,所述激励电极层的材料包括金属材料、半导体材料;

进一步地,所述扩散电极包括单个金属电极、单个半导体电极、多个金属电极组成的阵列、多个半导体电极组成的阵列;所述扩散电极层的材料包括单质块材和沉积在绝缘基片上薄膜材料,所述扩散工质溶液储藏层的材料包括多孔陶瓷材料和多孔有机材料;

进一步地,所述激励电极包括单个金属电极、单个半导体电极、多个金属电极组成的阵列、多个半导体电极组成的阵列;所述激励电极层的材料包括单质块材和沉积在绝缘基片上薄膜材料,所述激励工质溶液储藏层的材料包括多孔陶瓷材料和多孔有机材料;

步骤2、在空气间隙中放置基底材料;

进一步地,在所述基底材料表面设置纳米结构,所述纳米结构包括零维纳米结构、一维纳米结构、二维纳米结构、不同纳米结构的复合结构;

步骤3、添加工质溶液;

进一步地,根据所述步骤1中的所述等离子体反应装置的组成情况添加所述工质溶液,具体为:所述等离子体反应装置中设有扩散工质溶液储藏层和激励工质溶液储藏层时,在所述扩散工质溶液储藏层、所述激励工质溶液储藏层中分别添加所述工质溶液;所述等离子体反应装置中未设扩散工质溶液储藏层和激励工质溶液储藏层时,在所述基底材料表面添加所述工质溶液;

进一步地,所述工质溶液包括以下情况:(1)所述工质溶液采用纳米材料的浑浊液,包括水溶液、有机溶液;(2)所述工质溶液采用对所述基底材料表面纳米结构有腐蚀作用的酸;(3)所述工质溶液采用对所述基底材料表面纳米结构有腐蚀作用的碱;(4)所述工质溶液采用盐溶液,包括水溶液、有机溶液;(5)所述工质溶液采用水;(6)所述工质溶液采用有机液体;

步骤4、激励产生等离子体并作用于基底材料表面;

进一步地,所述基底材料的温度包括10~30℃、30~100℃、100~300℃。

在本发明的较佳实施方式中,本发明提供了一种纳米材料等离子体表面改造的方法,在纳米结构表面添加液体工作物质,使液体工作物质参与等离子体与纳米材料表面的相互作用,实现材料的光电转化性能明显提升。

在本发明的另一较佳实施方式中,本发明提出的方法充分考虑了改造过程的低成本性和高安全性,无需高温高压反应,无需特殊气体管控和压力管控,无需真空环境,实现了室温下的等离子体辅助沉积反应过程,处理速度快,工艺效率高,同时适用于对基片进行温度控制,适用范围广。

以下将结合附图对本发明的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本发明的目的、特征和效果。

附图说明

图1是本发明的一个较佳实施例的纳米材料等离子体表面改造的方法的实施例一示意图;

图2是本发明的一个较佳实施例的纳米材料等离子体表面改造的方法的实施例二示意图;

其中,101-扩散电极,1011-扩散电极层,1012-扩散绝缘介质阻挡层,1013-扩散工质溶液储藏层,102-激励电极,1021-激励电极层,1022-激励绝缘介质阻挡层,1023-激励工质溶液储藏层,20-等离子体激励电路,30-基底材料,40-工质溶液。

具体实施方式

以下参考说明书附图介绍本发明的多个优选实施例,使其技术内容更加清楚和便于理解。本发明可以通过许多不同形式的实施例来得以体现,本发明的保护范围并非仅限于文中提到的实施例。

在附图中,结构相同的部件以相同数字标号表示,各处结构或功能相似的组件以相似数字标号表示。附图所示的每一组件的尺寸和厚度是任意示出的,本发明并没有限定每个组件的尺寸和厚度。为了使图示更清晰,附图中有些地方适当夸大了部件的厚度。

如图1所示,一种纳米材料等离子体表面改造的方法,包括以下步骤:

步骤1:设置介质阻挡放电型的等离子体反应装置10,设置扩散电极101和激励电极102,在扩散电极101和激励电极102之间设置空气间隙103,将扩散电极101和激励电极102分别与等离子体激励电路20连接;

步骤2:在空气间隙103中放置基底材料30,在基底材料30表面设纳米结构,包括零维纳米结构、一维纳米结构、二维纳米结构、以及不同纳米结构的复合结构;

步骤3:在基底材料30表面设工质溶液40;

步骤4:激励产生等离子体,使等离子体区域作用于基底材料30表面。

如图1所示,扩散电极101由扩散电极层1011和扩散绝缘介质阻挡层1012组成,扩散电极层1011采用金属材料或半导体材料,同时采用单个电极或多个电极组成的阵列,扩散绝缘介质阻挡层1012置于扩散电极层1011和激励电极102之间。激励电极102由激励电极层1021和激励绝缘介质阻挡层1022组成,激励电极层1021采用金属材料或半导体材料,同时采用单个电极或多个电极组成的阵列,激励绝缘介质阻挡层1022置于激励电极层1021和扩散电极101之间。

如图1所示,实施例一中采用的工质溶液40包括以下试验情况:

情况一的工质溶液40是由零维纳米材料、一维纳米材料、二维纳米材料中的一种或多种组成的浑浊液,包括有机纳米材料的水溶液和有机溶液;

情况二的工质溶液40是对基底材料30表面纳米结构有腐蚀作用的一种或多种酸;

情况三的工质溶液40是对基底材料30表面纳米结构有腐蚀作用的一种或多种碱;

情况四的工质溶液40是一种或多种盐溶液,包括水溶液和有机溶液;

情况五的工质溶液40是水;

情况六的工质溶液40是有机液体。

如图1所示,实施例一试验了多种金属材料和多种半导体材料,包括单质块材和沉积在绝缘基片上薄膜材料;实施例一试验了多种类型的氯化物、硫酸盐、亚硫酸盐等盐类物质的水溶液和有机溶液,以及多种类型的酸和碱;实施例一还分别试验了零维纳米结构、一维纳米结构、二维纳米结构、以及不同纳米结构的复合结构中碳基和氧化物基的多种典型类型。针对盐溶液,实施例一试验了100~300℃的多个温控档位;针对纳米材料的浑浊液,实施例一试验了30~100℃的多个温控档位;针对酸、碱、水和有机液体,实施例一试验了10~30℃的多个温控档位。在实施例一中,基底材料30的光电特性明显提升,在光电化学制氢方面,性能最大提升1~2个数量级,改造效果显著。

如图2所示,一种纳米材料等离子体表面改造的方法,包括以下步骤:

步骤1:设置介质阻挡放电型的等离子体反应装置10,设置扩散电极101和激励电极102,在扩散电极101和激励电极102之间设置空气间隙103,将扩散电极101和激励电极102分别与等离子体激励电路20连接;

步骤2:在空气间隙103中放置基底材料30,在基底材料30表面设纳米结构,包括零维纳米结构、一维纳米结构、二维纳米结构、以及不同纳米结构的复合结构;

步骤3:分别在扩散工质溶液储藏层1013、激励工质溶液储藏层1023中设工质溶液40;

步骤4:激励产生等离子体,使等离子体区域作用于基底材料30表面。

如图2所示,扩散电极101由扩散电极层1011、扩散绝缘介质阻挡层1012、扩散工质溶液储藏层1013组成,扩散电极层1011采用金属材料或半导体材料,同时采用单个电极或多个电极组成的阵列;扩散绝缘介质阻挡层1012置于扩散电极层1011和激励电极102之间;扩散工质溶液储藏层置于扩散绝缘介质阻挡层1012和激励电极102之间,采用多孔陶瓷材料或多孔有机材料。激励电极102由激励电极层1021、激励绝缘介质阻挡层1022、激励工质溶液储藏层1023组成,激励电极层1021采用金属材料或半导体材料,同时采用单个电极或多个电极组成的阵列,激励电极102中的激励电极层1021、激励绝缘介质阻挡层1022、激励工质溶液储藏层1023呈同心圆设置,在激励电极102的中心和最外圈处均设有激励电极层1021。

如图2所示,实施例二中采用的工质溶液40包括以下试验情况:

情况一的工质溶液40是由零维纳米材料、一维纳米材料、二维纳米材料中的一种或多种组成的浑浊液,包括有机纳米材料的水溶液和有机溶液;

情况二的工质溶液40是对基底材料30表面纳米结构有腐蚀作用的一种或多种酸;

情况三的工质溶液40是对基底材料30表面纳米结构有腐蚀作用的一种或多种碱;

情况四的工质溶液40是一种或多种盐溶液,包括水溶液和有机溶液;

情况五的工质溶液40是水;

情况六的工质溶液40是有机液体。

如图2所示,实施例二试验了多种金属材料和多种半导体材料,包括单质块材和沉积在绝缘基片上薄膜材料;实施例二试验了多种类型的氯化物、硫酸盐、亚硫酸盐等盐类物质的水溶液和有机溶液,以及多种类型的酸和碱;实施例二还分别试验了零维纳米结构、一维纳米结构、二维纳米结构、以及不同纳米结构的复合结构中碳基和氧化物基的多种典型类型。针对盐溶液,实施例二试验了100~300℃的多个温控档位;针对纳米材料的浑浊液,实施例二试验了30~100℃的多个温控档位;针对酸、碱、水和有机液体,实施例二试验了10~30℃的多个温控档位。在实施例二中,基底材料30的光电特性明显提升,在光电化学制氢方面,性能最大提升1~2个数量级,改造效果显著。

以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

一种纳米材料等离子体表面改造的方法专利购买费用说明

专利买卖交易资料

Q:办理专利转让的流程及所需资料

A:专利权人变更需要办理著录项目变更手续,有代理机构的,变更手续应当由代理机构办理。

1:专利变更应当使用专利局统一制作的“著录项目变更申报书”提出。

2:按规定缴纳著录项目变更手续费。

3:同时提交相关证明文件原件。

4:专利权转移的,变更后的专利权人委托新专利代理机构的,应当提交变更后的全体专利申请人签字或者盖章的委托书。

Q:专利著录项目变更费用如何缴交

A:(1)直接到国家知识产权局受理大厅收费窗口缴纳,(2)通过代办处缴纳,(3)通过邮局或者银行汇款,更多缴纳方式

Q:专利转让变更,多久能出结果

A:著录项目变更请求书递交后,一般1-2个月左右就会收到通知,国家知识产权局会下达《转让手续合格通知书》。

动态评分

0.0

没有评分数据
没有评价数据
×

打开微信,点击底部的“发现”

使用“扫一扫”即可将网页分享至朋友圈

×
复制
用户中心
我的足迹
我的收藏

您的购物车还是空的,您可以

  • 微信公众号

    微信公众号
在线留言
返回顶部